mirror of
https://github.com/bvanroll/college-python-image.git
synced 2025-08-31 04:52:51 +00:00
first commit
This commit is contained in:
148
projecten1/lib/python3.6/site-packages/PIL/ImageStat.py
Normal file
148
projecten1/lib/python3.6/site-packages/PIL/ImageStat.py
Normal file
@@ -0,0 +1,148 @@
|
||||
#
|
||||
# The Python Imaging Library.
|
||||
# $Id$
|
||||
#
|
||||
# global image statistics
|
||||
#
|
||||
# History:
|
||||
# 1996-04-05 fl Created
|
||||
# 1997-05-21 fl Added mask; added rms, var, stddev attributes
|
||||
# 1997-08-05 fl Added median
|
||||
# 1998-07-05 hk Fixed integer overflow error
|
||||
#
|
||||
# Notes:
|
||||
# This class shows how to implement delayed evaluation of attributes.
|
||||
# To get a certain value, simply access the corresponding attribute.
|
||||
# The __getattr__ dispatcher takes care of the rest.
|
||||
#
|
||||
# Copyright (c) Secret Labs AB 1997.
|
||||
# Copyright (c) Fredrik Lundh 1996-97.
|
||||
#
|
||||
# See the README file for information on usage and redistribution.
|
||||
#
|
||||
|
||||
import math
|
||||
import operator
|
||||
import functools
|
||||
|
||||
|
||||
class Stat(object):
|
||||
|
||||
def __init__(self, image_or_list, mask=None):
|
||||
try:
|
||||
if mask:
|
||||
self.h = image_or_list.histogram(mask)
|
||||
else:
|
||||
self.h = image_or_list.histogram()
|
||||
except AttributeError:
|
||||
self.h = image_or_list # assume it to be a histogram list
|
||||
if not isinstance(self.h, list):
|
||||
raise TypeError("first argument must be image or list")
|
||||
self.bands = list(range(len(self.h) // 256))
|
||||
|
||||
def __getattr__(self, id):
|
||||
"Calculate missing attribute"
|
||||
if id[:4] == "_get":
|
||||
raise AttributeError(id)
|
||||
# calculate missing attribute
|
||||
v = getattr(self, "_get" + id)()
|
||||
setattr(self, id, v)
|
||||
return v
|
||||
|
||||
def _getextrema(self):
|
||||
"Get min/max values for each band in the image"
|
||||
|
||||
def minmax(histogram):
|
||||
n = 255
|
||||
x = 0
|
||||
for i in range(256):
|
||||
if histogram[i]:
|
||||
n = min(n, i)
|
||||
x = max(x, i)
|
||||
return n, x # returns (255, 0) if there's no data in the histogram
|
||||
|
||||
v = []
|
||||
for i in range(0, len(self.h), 256):
|
||||
v.append(minmax(self.h[i:]))
|
||||
return v
|
||||
|
||||
def _getcount(self):
|
||||
"Get total number of pixels in each layer"
|
||||
|
||||
v = []
|
||||
for i in range(0, len(self.h), 256):
|
||||
v.append(functools.reduce(operator.add, self.h[i:i+256]))
|
||||
return v
|
||||
|
||||
def _getsum(self):
|
||||
"Get sum of all pixels in each layer"
|
||||
|
||||
v = []
|
||||
for i in range(0, len(self.h), 256):
|
||||
layerSum = 0.0
|
||||
for j in range(256):
|
||||
layerSum += j * self.h[i + j]
|
||||
v.append(layerSum)
|
||||
return v
|
||||
|
||||
def _getsum2(self):
|
||||
"Get squared sum of all pixels in each layer"
|
||||
|
||||
v = []
|
||||
for i in range(0, len(self.h), 256):
|
||||
sum2 = 0.0
|
||||
for j in range(256):
|
||||
sum2 += (j ** 2) * float(self.h[i + j])
|
||||
v.append(sum2)
|
||||
return v
|
||||
|
||||
def _getmean(self):
|
||||
"Get average pixel level for each layer"
|
||||
|
||||
v = []
|
||||
for i in self.bands:
|
||||
v.append(self.sum[i] / self.count[i])
|
||||
return v
|
||||
|
||||
def _getmedian(self):
|
||||
"Get median pixel level for each layer"
|
||||
|
||||
v = []
|
||||
for i in self.bands:
|
||||
s = 0
|
||||
l = self.count[i]//2
|
||||
b = i * 256
|
||||
for j in range(256):
|
||||
s = s + self.h[b+j]
|
||||
if s > l:
|
||||
break
|
||||
v.append(j)
|
||||
return v
|
||||
|
||||
def _getrms(self):
|
||||
"Get RMS for each layer"
|
||||
|
||||
v = []
|
||||
for i in self.bands:
|
||||
v.append(math.sqrt(self.sum2[i] / self.count[i]))
|
||||
return v
|
||||
|
||||
def _getvar(self):
|
||||
"Get variance for each layer"
|
||||
|
||||
v = []
|
||||
for i in self.bands:
|
||||
n = self.count[i]
|
||||
v.append((self.sum2[i]-(self.sum[i]**2.0)/n)/n)
|
||||
return v
|
||||
|
||||
def _getstddev(self):
|
||||
"Get standard deviation for each layer"
|
||||
|
||||
v = []
|
||||
for i in self.bands:
|
||||
v.append(math.sqrt(self.var[i]))
|
||||
return v
|
||||
|
||||
|
||||
Global = Stat # compatibility
|
Reference in New Issue
Block a user