mirror of
https://github.com/bvanroll/college-python-image.git
synced 2025-09-01 05:22:50 +00:00
first commit
This commit is contained in:
11
projecten1/lib/python3.6/site-packages/numpy/fft/__init__.py
Normal file
11
projecten1/lib/python3.6/site-packages/numpy/fft/__init__.py
Normal file
@@ -0,0 +1,11 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
# To get sub-modules
|
||||
from .info import __doc__
|
||||
|
||||
from .fftpack import *
|
||||
from .helper import *
|
||||
|
||||
from numpy.testing import _numpy_tester
|
||||
test = _numpy_tester().test
|
||||
bench = _numpy_tester().bench
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1270
projecten1/lib/python3.6/site-packages/numpy/fft/fftpack.py
Normal file
1270
projecten1/lib/python3.6/site-packages/numpy/fft/fftpack.py
Normal file
File diff suppressed because it is too large
Load Diff
Binary file not shown.
323
projecten1/lib/python3.6/site-packages/numpy/fft/helper.py
Normal file
323
projecten1/lib/python3.6/site-packages/numpy/fft/helper.py
Normal file
@@ -0,0 +1,323 @@
|
||||
"""
|
||||
Discrete Fourier Transforms - helper.py
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import collections
|
||||
import threading
|
||||
|
||||
from numpy.compat import integer_types
|
||||
from numpy.core import (
|
||||
asarray, concatenate, arange, take, integer, empty
|
||||
)
|
||||
|
||||
# Created by Pearu Peterson, September 2002
|
||||
|
||||
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
|
||||
|
||||
integer_types = integer_types + (integer,)
|
||||
|
||||
|
||||
def fftshift(x, axes=None):
|
||||
"""
|
||||
Shift the zero-frequency component to the center of the spectrum.
|
||||
|
||||
This function swaps half-spaces for all axes listed (defaults to all).
|
||||
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to shift. Default is None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
ifftshift : The inverse of `fftshift`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> freqs = np.fft.fftfreq(10, 0.1)
|
||||
>>> freqs
|
||||
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
|
||||
>>> np.fft.fftshift(freqs)
|
||||
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
||||
|
||||
Shift the zero-frequency component only along the second axis:
|
||||
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.fftshift(freqs, axes=(1,))
|
||||
array([[ 2., 0., 1.],
|
||||
[-4., 3., 4.],
|
||||
[-1., -3., -2.]])
|
||||
|
||||
"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = (n+1)//2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
|
||||
def ifftshift(x, axes=None):
|
||||
"""
|
||||
The inverse of `fftshift`. Although identical for even-length `x`, the
|
||||
functions differ by one sample for odd-length `x`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to calculate. Defaults to None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
fftshift : Shift zero-frequency component to the center of the spectrum.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
|
||||
"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = n-(n+1)//2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
|
||||
def fftfreq(n, d=1.0):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies.
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length `n` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
||||
>>> fourier = np.fft.fft(signal)
|
||||
>>> n = signal.size
|
||||
>>> timestep = 0.1
|
||||
>>> freq = np.fft.fftfreq(n, d=timestep)
|
||||
>>> freq
|
||||
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0 / (n * d)
|
||||
results = empty(n, int)
|
||||
N = (n-1)//2 + 1
|
||||
p1 = arange(0, N, dtype=int)
|
||||
results[:N] = p1
|
||||
p2 = arange(-(n//2), 0, dtype=int)
|
||||
results[N:] = p2
|
||||
return results * val
|
||||
#return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)
|
||||
|
||||
|
||||
def rfftfreq(n, d=1.0):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies
|
||||
(for usage with rfft, irfft).
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
|
||||
|
||||
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
|
||||
the Nyquist frequency component is considered to be positive.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length ``n//2 + 1`` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
|
||||
>>> fourier = np.fft.rfft(signal)
|
||||
>>> n = signal.size
|
||||
>>> sample_rate = 100
|
||||
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
|
||||
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., 30., 40., 50.])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0/(n*d)
|
||||
N = n//2 + 1
|
||||
results = arange(0, N, dtype=int)
|
||||
return results * val
|
||||
|
||||
|
||||
class _FFTCache(object):
|
||||
"""
|
||||
Cache for the FFT twiddle factors as an LRU (least recently used) cache.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
max_size_in_mb : int
|
||||
Maximum memory usage of the cache before items are being evicted.
|
||||
max_item_count : int
|
||||
Maximum item count of the cache before items are being evicted.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Items will be evicted if either limit has been reached upon getting and
|
||||
setting. The maximum memory usages is not strictly the given
|
||||
``max_size_in_mb`` but rather
|
||||
``max(max_size_in_mb, 1.5 * size_of_largest_item)``. Thus the cache will
|
||||
never be completely cleared - at least one item will remain and a single
|
||||
large item can cause the cache to retain several smaller items even if the
|
||||
given maximum cache size has been exceeded.
|
||||
"""
|
||||
def __init__(self, max_size_in_mb, max_item_count):
|
||||
self._max_size_in_bytes = max_size_in_mb * 1024 ** 2
|
||||
self._max_item_count = max_item_count
|
||||
self._dict = collections.OrderedDict()
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def put_twiddle_factors(self, n, factors):
|
||||
"""
|
||||
Store twiddle factors for an FFT of length n in the cache.
|
||||
|
||||
Putting multiple twiddle factors for a certain n will store it multiple
|
||||
times.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Data length for the FFT.
|
||||
factors : ndarray
|
||||
The actual twiddle values.
|
||||
"""
|
||||
with self._lock:
|
||||
# Pop + later add to move it to the end for LRU behavior.
|
||||
# Internally everything is stored in a dictionary whose values are
|
||||
# lists.
|
||||
try:
|
||||
value = self._dict.pop(n)
|
||||
except KeyError:
|
||||
value = []
|
||||
value.append(factors)
|
||||
self._dict[n] = value
|
||||
self._prune_cache()
|
||||
|
||||
def pop_twiddle_factors(self, n):
|
||||
"""
|
||||
Pop twiddle factors for an FFT of length n from the cache.
|
||||
|
||||
Will return None if the requested twiddle factors are not available in
|
||||
the cache.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Data length for the FFT.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray or None
|
||||
The retrieved twiddle factors if available, else None.
|
||||
"""
|
||||
with self._lock:
|
||||
if n not in self._dict or not self._dict[n]:
|
||||
return None
|
||||
# Pop + later add to move it to the end for LRU behavior.
|
||||
all_values = self._dict.pop(n)
|
||||
value = all_values.pop()
|
||||
# Only put pack if there are still some arrays left in the list.
|
||||
if all_values:
|
||||
self._dict[n] = all_values
|
||||
return value
|
||||
|
||||
def _prune_cache(self):
|
||||
# Always keep at least one item.
|
||||
while len(self._dict) > 1 and (
|
||||
len(self._dict) > self._max_item_count or self._check_size()):
|
||||
self._dict.popitem(last=False)
|
||||
|
||||
def _check_size(self):
|
||||
item_sizes = [sum(_j.nbytes for _j in _i)
|
||||
for _i in self._dict.values() if _i]
|
||||
if not item_sizes:
|
||||
return False
|
||||
max_size = max(self._max_size_in_bytes, 1.5 * max(item_sizes))
|
||||
return sum(item_sizes) > max_size
|
187
projecten1/lib/python3.6/site-packages/numpy/fft/info.py
Normal file
187
projecten1/lib/python3.6/site-packages/numpy/fft/info.py
Normal file
@@ -0,0 +1,187 @@
|
||||
"""
|
||||
Discrete Fourier Transform (:mod:`numpy.fft`)
|
||||
=============================================
|
||||
|
||||
.. currentmodule:: numpy.fft
|
||||
|
||||
Standard FFTs
|
||||
-------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fft Discrete Fourier transform.
|
||||
ifft Inverse discrete Fourier transform.
|
||||
fft2 Discrete Fourier transform in two dimensions.
|
||||
ifft2 Inverse discrete Fourier transform in two dimensions.
|
||||
fftn Discrete Fourier transform in N-dimensions.
|
||||
ifftn Inverse discrete Fourier transform in N dimensions.
|
||||
|
||||
Real FFTs
|
||||
---------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
rfft Real discrete Fourier transform.
|
||||
irfft Inverse real discrete Fourier transform.
|
||||
rfft2 Real discrete Fourier transform in two dimensions.
|
||||
irfft2 Inverse real discrete Fourier transform in two dimensions.
|
||||
rfftn Real discrete Fourier transform in N dimensions.
|
||||
irfftn Inverse real discrete Fourier transform in N dimensions.
|
||||
|
||||
Hermitian FFTs
|
||||
--------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
hfft Hermitian discrete Fourier transform.
|
||||
ihfft Inverse Hermitian discrete Fourier transform.
|
||||
|
||||
Helper routines
|
||||
---------------
|
||||
|
||||
.. autosummary::
|
||||
:toctree: generated/
|
||||
|
||||
fftfreq Discrete Fourier Transform sample frequencies.
|
||||
rfftfreq DFT sample frequencies (for usage with rfft, irfft).
|
||||
fftshift Shift zero-frequency component to center of spectrum.
|
||||
ifftshift Inverse of fftshift.
|
||||
|
||||
|
||||
Background information
|
||||
----------------------
|
||||
|
||||
Fourier analysis is fundamentally a method for expressing a function as a
|
||||
sum of periodic components, and for recovering the function from those
|
||||
components. When both the function and its Fourier transform are
|
||||
replaced with discretized counterparts, it is called the discrete Fourier
|
||||
transform (DFT). The DFT has become a mainstay of numerical computing in
|
||||
part because of a very fast algorithm for computing it, called the Fast
|
||||
Fourier Transform (FFT), which was known to Gauss (1805) and was brought
|
||||
to light in its current form by Cooley and Tukey [CT]_. Press et al. [NR]_
|
||||
provide an accessible introduction to Fourier analysis and its
|
||||
applications.
|
||||
|
||||
Because the discrete Fourier transform separates its input into
|
||||
components that contribute at discrete frequencies, it has a great number
|
||||
of applications in digital signal processing, e.g., for filtering, and in
|
||||
this context the discretized input to the transform is customarily
|
||||
referred to as a *signal*, which exists in the *time domain*. The output
|
||||
is called a *spectrum* or *transform* and exists in the *frequency
|
||||
domain*.
|
||||
|
||||
Implementation details
|
||||
----------------------
|
||||
|
||||
There are many ways to define the DFT, varying in the sign of the
|
||||
exponent, normalization, etc. In this implementation, the DFT is defined
|
||||
as
|
||||
|
||||
.. math::
|
||||
A_k = \\sum_{m=0}^{n-1} a_m \\exp\\left\\{-2\\pi i{mk \\over n}\\right\\}
|
||||
\\qquad k = 0,\\ldots,n-1.
|
||||
|
||||
The DFT is in general defined for complex inputs and outputs, and a
|
||||
single-frequency component at linear frequency :math:`f` is
|
||||
represented by a complex exponential
|
||||
:math:`a_m = \\exp\\{2\\pi i\\,f m\\Delta t\\}`, where :math:`\\Delta t`
|
||||
is the sampling interval.
|
||||
|
||||
The values in the result follow so-called "standard" order: If ``A =
|
||||
fft(a, n)``, then ``A[0]`` contains the zero-frequency term (the sum of
|
||||
the signal), which is always purely real for real inputs. Then ``A[1:n/2]``
|
||||
contains the positive-frequency terms, and ``A[n/2+1:]`` contains the
|
||||
negative-frequency terms, in order of decreasingly negative frequency.
|
||||
For an even number of input points, ``A[n/2]`` represents both positive and
|
||||
negative Nyquist frequency, and is also purely real for real input. For
|
||||
an odd number of input points, ``A[(n-1)/2]`` contains the largest positive
|
||||
frequency, while ``A[(n+1)/2]`` contains the largest negative frequency.
|
||||
The routine ``np.fft.fftfreq(n)`` returns an array giving the frequencies
|
||||
of corresponding elements in the output. The routine
|
||||
``np.fft.fftshift(A)`` shifts transforms and their frequencies to put the
|
||||
zero-frequency components in the middle, and ``np.fft.ifftshift(A)`` undoes
|
||||
that shift.
|
||||
|
||||
When the input `a` is a time-domain signal and ``A = fft(a)``, ``np.abs(A)``
|
||||
is its amplitude spectrum and ``np.abs(A)**2`` is its power spectrum.
|
||||
The phase spectrum is obtained by ``np.angle(A)``.
|
||||
|
||||
The inverse DFT is defined as
|
||||
|
||||
.. math::
|
||||
a_m = \\frac{1}{n}\\sum_{k=0}^{n-1}A_k\\exp\\left\\{2\\pi i{mk\\over n}\\right\\}
|
||||
\\qquad m = 0,\\ldots,n-1.
|
||||
|
||||
It differs from the forward transform by the sign of the exponential
|
||||
argument and the default normalization by :math:`1/n`.
|
||||
|
||||
Normalization
|
||||
-------------
|
||||
The default normalization has the direct transforms unscaled and the inverse
|
||||
transforms are scaled by :math:`1/n`. It is possible to obtain unitary
|
||||
transforms by setting the keyword argument ``norm`` to ``"ortho"`` (default is
|
||||
`None`) so that both direct and inverse transforms will be scaled by
|
||||
:math:`1/\\sqrt{n}`.
|
||||
|
||||
Real and Hermitian transforms
|
||||
-----------------------------
|
||||
|
||||
When the input is purely real, its transform is Hermitian, i.e., the
|
||||
component at frequency :math:`f_k` is the complex conjugate of the
|
||||
component at frequency :math:`-f_k`, which means that for real
|
||||
inputs there is no information in the negative frequency components that
|
||||
is not already available from the positive frequency components.
|
||||
The family of `rfft` functions is
|
||||
designed to operate on real inputs, and exploits this symmetry by
|
||||
computing only the positive frequency components, up to and including the
|
||||
Nyquist frequency. Thus, ``n`` input points produce ``n/2+1`` complex
|
||||
output points. The inverses of this family assumes the same symmetry of
|
||||
its input, and for an output of ``n`` points uses ``n/2+1`` input points.
|
||||
|
||||
Correspondingly, when the spectrum is purely real, the signal is
|
||||
Hermitian. The `hfft` family of functions exploits this symmetry by
|
||||
using ``n/2+1`` complex points in the input (time) domain for ``n`` real
|
||||
points in the frequency domain.
|
||||
|
||||
In higher dimensions, FFTs are used, e.g., for image analysis and
|
||||
filtering. The computational efficiency of the FFT means that it can
|
||||
also be a faster way to compute large convolutions, using the property
|
||||
that a convolution in the time domain is equivalent to a point-by-point
|
||||
multiplication in the frequency domain.
|
||||
|
||||
Higher dimensions
|
||||
-----------------
|
||||
|
||||
In two dimensions, the DFT is defined as
|
||||
|
||||
.. math::
|
||||
A_{kl} = \\sum_{m=0}^{M-1} \\sum_{n=0}^{N-1}
|
||||
a_{mn}\\exp\\left\\{-2\\pi i \\left({mk\\over M}+{nl\\over N}\\right)\\right\\}
|
||||
\\qquad k = 0, \\ldots, M-1;\\quad l = 0, \\ldots, N-1,
|
||||
|
||||
which extends in the obvious way to higher dimensions, and the inverses
|
||||
in higher dimensions also extend in the same way.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
.. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
|
||||
machine calculation of complex Fourier series," *Math. Comput.*
|
||||
19: 297-301.
|
||||
|
||||
.. [NR] Press, W., Teukolsky, S., Vetterline, W.T., and Flannery, B.P.,
|
||||
2007, *Numerical Recipes: The Art of Scientific Computing*, ch.
|
||||
12-13. Cambridge Univ. Press, Cambridge, UK.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
For examples, see the various functions.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
depends = ['core']
|
19
projecten1/lib/python3.6/site-packages/numpy/fft/setup.py
Normal file
19
projecten1/lib/python3.6/site-packages/numpy/fft/setup.py
Normal file
@@ -0,0 +1,19 @@
|
||||
from __future__ import division, print_function
|
||||
|
||||
|
||||
def configuration(parent_package='',top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
config = Configuration('fft', parent_package, top_path)
|
||||
|
||||
config.add_data_dir('tests')
|
||||
|
||||
# Configure fftpack_lite
|
||||
config.add_extension('fftpack_lite',
|
||||
sources=['fftpack_litemodule.c', 'fftpack.c']
|
||||
)
|
||||
|
||||
return config
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,190 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
from numpy.random import random
|
||||
from numpy.testing import (
|
||||
run_module_suite, assert_array_almost_equal, assert_array_equal,
|
||||
assert_raises,
|
||||
)
|
||||
import threading
|
||||
import sys
|
||||
if sys.version_info[0] >= 3:
|
||||
import queue
|
||||
else:
|
||||
import Queue as queue
|
||||
|
||||
|
||||
def fft1(x):
|
||||
L = len(x)
|
||||
phase = -2j*np.pi*(np.arange(L)/float(L))
|
||||
phase = np.arange(L).reshape(-1, 1) * phase
|
||||
return np.sum(x*np.exp(phase), axis=1)
|
||||
|
||||
|
||||
class TestFFTShift(object):
|
||||
|
||||
def test_fft_n(self):
|
||||
assert_raises(ValueError, np.fft.fft, [1, 2, 3], 0)
|
||||
|
||||
|
||||
class TestFFT1D(object):
|
||||
|
||||
def test_fft(self):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_array_almost_equal(fft1(x), np.fft.fft(x))
|
||||
assert_array_almost_equal(fft1(x) / np.sqrt(30),
|
||||
np.fft.fft(x, norm="ortho"))
|
||||
|
||||
def test_ifft(self):
|
||||
x = random(30) + 1j*random(30)
|
||||
assert_array_almost_equal(x, np.fft.ifft(np.fft.fft(x)))
|
||||
assert_array_almost_equal(
|
||||
x, np.fft.ifft(np.fft.fft(x, norm="ortho"), norm="ortho"))
|
||||
|
||||
def test_fft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_array_almost_equal(np.fft.fft(np.fft.fft(x, axis=1), axis=0),
|
||||
np.fft.fft2(x))
|
||||
assert_array_almost_equal(np.fft.fft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.fft2(x, norm="ortho"))
|
||||
|
||||
def test_ifft2(self):
|
||||
x = random((30, 20)) + 1j*random((30, 20))
|
||||
assert_array_almost_equal(np.fft.ifft(np.fft.ifft(x, axis=1), axis=0),
|
||||
np.fft.ifft2(x))
|
||||
assert_array_almost_equal(np.fft.ifft2(x) * np.sqrt(30 * 20),
|
||||
np.fft.ifft2(x, norm="ortho"))
|
||||
|
||||
def test_fftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_array_almost_equal(
|
||||
np.fft.fft(np.fft.fft(np.fft.fft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.fftn(x))
|
||||
assert_array_almost_equal(np.fft.fftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.fftn(x, norm="ortho"))
|
||||
|
||||
def test_ifftn(self):
|
||||
x = random((30, 20, 10)) + 1j*random((30, 20, 10))
|
||||
assert_array_almost_equal(
|
||||
np.fft.ifft(np.fft.ifft(np.fft.ifft(x, axis=2), axis=1), axis=0),
|
||||
np.fft.ifftn(x))
|
||||
assert_array_almost_equal(np.fft.ifftn(x) * np.sqrt(30 * 20 * 10),
|
||||
np.fft.ifftn(x, norm="ortho"))
|
||||
|
||||
def test_rfft(self):
|
||||
x = random(30)
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'ortho']:
|
||||
assert_array_almost_equal(
|
||||
np.fft.fft(x, n=n, norm=norm)[:(n//2 + 1)],
|
||||
np.fft.rfft(x, n=n, norm=norm))
|
||||
assert_array_almost_equal(np.fft.rfft(x, n=n) / np.sqrt(n),
|
||||
np.fft.rfft(x, n=n, norm="ortho"))
|
||||
|
||||
def test_irfft(self):
|
||||
x = random(30)
|
||||
assert_array_almost_equal(x, np.fft.irfft(np.fft.rfft(x)))
|
||||
assert_array_almost_equal(
|
||||
x, np.fft.irfft(np.fft.rfft(x, norm="ortho"), norm="ortho"))
|
||||
|
||||
def test_rfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_array_almost_equal(np.fft.fft2(x)[:, :11], np.fft.rfft2(x))
|
||||
assert_array_almost_equal(np.fft.rfft2(x) / np.sqrt(30 * 20),
|
||||
np.fft.rfft2(x, norm="ortho"))
|
||||
|
||||
def test_irfft2(self):
|
||||
x = random((30, 20))
|
||||
assert_array_almost_equal(x, np.fft.irfft2(np.fft.rfft2(x)))
|
||||
assert_array_almost_equal(
|
||||
x, np.fft.irfft2(np.fft.rfft2(x, norm="ortho"), norm="ortho"))
|
||||
|
||||
def test_rfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_array_almost_equal(np.fft.fftn(x)[:, :, :6], np.fft.rfftn(x))
|
||||
assert_array_almost_equal(np.fft.rfftn(x) / np.sqrt(30 * 20 * 10),
|
||||
np.fft.rfftn(x, norm="ortho"))
|
||||
|
||||
def test_irfftn(self):
|
||||
x = random((30, 20, 10))
|
||||
assert_array_almost_equal(x, np.fft.irfftn(np.fft.rfftn(x)))
|
||||
assert_array_almost_equal(
|
||||
x, np.fft.irfftn(np.fft.rfftn(x, norm="ortho"), norm="ortho"))
|
||||
|
||||
def test_hfft(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_array_almost_equal(np.fft.fft(x), np.fft.hfft(x_herm))
|
||||
assert_array_almost_equal(np.fft.hfft(x_herm) / np.sqrt(30),
|
||||
np.fft.hfft(x_herm, norm="ortho"))
|
||||
|
||||
def test_ihttf(self):
|
||||
x = random(14) + 1j*random(14)
|
||||
x_herm = np.concatenate((random(1), x, random(1)))
|
||||
x = np.concatenate((x_herm, x[::-1].conj()))
|
||||
assert_array_almost_equal(x_herm, np.fft.ihfft(np.fft.hfft(x_herm)))
|
||||
assert_array_almost_equal(
|
||||
x_herm, np.fft.ihfft(np.fft.hfft(x_herm, norm="ortho"),
|
||||
norm="ortho"))
|
||||
|
||||
def test_all_1d_norm_preserving(self):
|
||||
# verify that round-trip transforms are norm-preserving
|
||||
x = random(30)
|
||||
x_norm = np.linalg.norm(x)
|
||||
n = x.size * 2
|
||||
func_pairs = [(np.fft.fft, np.fft.ifft),
|
||||
(np.fft.rfft, np.fft.irfft),
|
||||
# hfft: order so the first function takes x.size samples
|
||||
# (necessary for comparison to x_norm above)
|
||||
(np.fft.ihfft, np.fft.hfft),
|
||||
]
|
||||
for forw, back in func_pairs:
|
||||
for n in [x.size, 2*x.size]:
|
||||
for norm in [None, 'ortho']:
|
||||
tmp = forw(x, n=n, norm=norm)
|
||||
tmp = back(tmp, n=n, norm=norm)
|
||||
assert_array_almost_equal(x_norm,
|
||||
np.linalg.norm(tmp))
|
||||
|
||||
class TestFFTThreadSafe(object):
|
||||
threads = 16
|
||||
input_shape = (800, 200)
|
||||
|
||||
def _test_mtsame(self, func, *args):
|
||||
def worker(args, q):
|
||||
q.put(func(*args))
|
||||
|
||||
q = queue.Queue()
|
||||
expected = func(*args)
|
||||
|
||||
# Spin off a bunch of threads to call the same function simultaneously
|
||||
t = [threading.Thread(target=worker, args=(args, q))
|
||||
for i in range(self.threads)]
|
||||
[x.start() for x in t]
|
||||
|
||||
[x.join() for x in t]
|
||||
# Make sure all threads returned the correct value
|
||||
for i in range(self.threads):
|
||||
assert_array_equal(q.get(timeout=5), expected,
|
||||
'Function returned wrong value in multithreaded context')
|
||||
|
||||
def test_fft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.fft, a)
|
||||
|
||||
def test_ifft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.ifft, a)
|
||||
|
||||
def test_rfft(self):
|
||||
a = np.ones(self.input_shape)
|
||||
self._test_mtsame(np.fft.rfft, a)
|
||||
|
||||
def test_irfft(self):
|
||||
a = np.ones(self.input_shape) * 1+0j
|
||||
self._test_mtsame(np.fft.irfft, a)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,158 @@
|
||||
"""Test functions for fftpack.helper module
|
||||
|
||||
Copied from fftpack.helper by Pearu Peterson, October 2005
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import (
|
||||
run_module_suite, assert_array_almost_equal, assert_equal,
|
||||
)
|
||||
from numpy import fft
|
||||
from numpy import pi
|
||||
from numpy.fft.helper import _FFTCache
|
||||
|
||||
|
||||
class TestFFTShift(object):
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
y = [-4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
y = [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(fft.fftshift(x), y)
|
||||
assert_array_almost_equal(fft.ifftshift(y), x)
|
||||
|
||||
def test_inverse(self):
|
||||
for n in [1, 4, 9, 100, 211]:
|
||||
x = np.random.random((n,))
|
||||
assert_array_almost_equal(fft.ifftshift(fft.fftshift(x)), x)
|
||||
|
||||
def test_axes_keyword(self):
|
||||
freqs = [[0, 1, 2], [3, 4, -4], [-3, -2, -1]]
|
||||
shifted = [[-1, -3, -2], [2, 0, 1], [-4, 3, 4]]
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=(0, 1)), shifted)
|
||||
assert_array_almost_equal(fft.fftshift(freqs, axes=0),
|
||||
fft.fftshift(freqs, axes=(0,)))
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=(0, 1)), freqs)
|
||||
assert_array_almost_equal(fft.ifftshift(shifted, axes=0),
|
||||
fft.ifftshift(shifted, axes=(0,)))
|
||||
|
||||
|
||||
class TestFFTFreq(object):
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(9*fft.fftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.fftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, -5, -4, -3, -2, -1]
|
||||
assert_array_almost_equal(10*fft.fftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.fftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestRFFTFreq(object):
|
||||
|
||||
def test_definition(self):
|
||||
x = [0, 1, 2, 3, 4]
|
||||
assert_array_almost_equal(9*fft.rfftfreq(9), x)
|
||||
assert_array_almost_equal(9*pi*fft.rfftfreq(9, pi), x)
|
||||
x = [0, 1, 2, 3, 4, 5]
|
||||
assert_array_almost_equal(10*fft.rfftfreq(10), x)
|
||||
assert_array_almost_equal(10*pi*fft.rfftfreq(10, pi), x)
|
||||
|
||||
|
||||
class TestIRFFTN(object):
|
||||
|
||||
def test_not_last_axis_success(self):
|
||||
ar, ai = np.random.random((2, 16, 8, 32))
|
||||
a = ar + 1j*ai
|
||||
|
||||
axes = (-2,)
|
||||
|
||||
# Should not raise error
|
||||
fft.irfftn(a, axes=axes)
|
||||
|
||||
|
||||
class TestFFTCache(object):
|
||||
|
||||
def test_basic_behaviour(self):
|
||||
c = _FFTCache(max_size_in_mb=1, max_item_count=4)
|
||||
|
||||
# Put
|
||||
c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
|
||||
c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
|
||||
|
||||
# Get
|
||||
assert_array_almost_equal(c.pop_twiddle_factors(1),
|
||||
np.ones(2, dtype=np.float32))
|
||||
assert_array_almost_equal(c.pop_twiddle_factors(2),
|
||||
np.zeros(2, dtype=np.float32))
|
||||
|
||||
# Nothing should be left.
|
||||
assert_equal(len(c._dict), 0)
|
||||
|
||||
# Now put everything in twice so it can be retrieved once and each will
|
||||
# still have one item left.
|
||||
for _ in range(2):
|
||||
c.put_twiddle_factors(1, np.ones(2, dtype=np.float32))
|
||||
c.put_twiddle_factors(2, np.zeros(2, dtype=np.float32))
|
||||
assert_array_almost_equal(c.pop_twiddle_factors(1),
|
||||
np.ones(2, dtype=np.float32))
|
||||
assert_array_almost_equal(c.pop_twiddle_factors(2),
|
||||
np.zeros(2, dtype=np.float32))
|
||||
assert_equal(len(c._dict), 2)
|
||||
|
||||
def test_automatic_pruning(self):
|
||||
# That's around 2600 single precision samples.
|
||||
c = _FFTCache(max_size_in_mb=0.01, max_item_count=4)
|
||||
|
||||
c.put_twiddle_factors(1, np.ones(200, dtype=np.float32))
|
||||
c.put_twiddle_factors(2, np.ones(200, dtype=np.float32))
|
||||
assert_equal(list(c._dict.keys()), [1, 2])
|
||||
|
||||
# This is larger than the limit but should still be kept.
|
||||
c.put_twiddle_factors(3, np.ones(3000, dtype=np.float32))
|
||||
assert_equal(list(c._dict.keys()), [1, 2, 3])
|
||||
# Add one more.
|
||||
c.put_twiddle_factors(4, np.ones(3000, dtype=np.float32))
|
||||
# The other three should no longer exist.
|
||||
assert_equal(list(c._dict.keys()), [4])
|
||||
|
||||
# Now test the max item count pruning.
|
||||
c = _FFTCache(max_size_in_mb=0.01, max_item_count=2)
|
||||
c.put_twiddle_factors(2, np.empty(2))
|
||||
c.put_twiddle_factors(1, np.empty(2))
|
||||
# Can still be accessed.
|
||||
assert_equal(list(c._dict.keys()), [2, 1])
|
||||
|
||||
c.put_twiddle_factors(3, np.empty(2))
|
||||
# 1 and 3 can still be accessed - c[2] has been touched least recently
|
||||
# and is thus evicted.
|
||||
assert_equal(list(c._dict.keys()), [1, 3])
|
||||
|
||||
# One last test. We will add a single large item that is slightly
|
||||
# bigger then the cache size. Some small items can still be added.
|
||||
c = _FFTCache(max_size_in_mb=0.01, max_item_count=5)
|
||||
c.put_twiddle_factors(1, np.ones(3000, dtype=np.float32))
|
||||
c.put_twiddle_factors(2, np.ones(2, dtype=np.float32))
|
||||
c.put_twiddle_factors(3, np.ones(2, dtype=np.float32))
|
||||
c.put_twiddle_factors(4, np.ones(2, dtype=np.float32))
|
||||
assert_equal(list(c._dict.keys()), [1, 2, 3, 4])
|
||||
|
||||
# One more big item. This time it is 6 smaller ones but they are
|
||||
# counted as one big item.
|
||||
for _ in range(6):
|
||||
c.put_twiddle_factors(5, np.ones(500, dtype=np.float32))
|
||||
# '1' no longer in the cache. Rest still in the cache.
|
||||
assert_equal(list(c._dict.keys()), [2, 3, 4, 5])
|
||||
|
||||
# Another big item - should now be the only item in the cache.
|
||||
c.put_twiddle_factors(6, np.ones(4000, dtype=np.float32))
|
||||
assert_equal(list(c._dict.keys()), [6])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
Reference in New Issue
Block a user