mirror of
https://github.com/bvanroll/college-python-image.git
synced 2025-09-01 13:32:47 +00:00
first commit
This commit is contained in:
323
projecten1/lib/python3.6/site-packages/numpy/fft/helper.py
Normal file
323
projecten1/lib/python3.6/site-packages/numpy/fft/helper.py
Normal file
@@ -0,0 +1,323 @@
|
||||
"""
|
||||
Discrete Fourier Transforms - helper.py
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import collections
|
||||
import threading
|
||||
|
||||
from numpy.compat import integer_types
|
||||
from numpy.core import (
|
||||
asarray, concatenate, arange, take, integer, empty
|
||||
)
|
||||
|
||||
# Created by Pearu Peterson, September 2002
|
||||
|
||||
__all__ = ['fftshift', 'ifftshift', 'fftfreq', 'rfftfreq']
|
||||
|
||||
integer_types = integer_types + (integer,)
|
||||
|
||||
|
||||
def fftshift(x, axes=None):
|
||||
"""
|
||||
Shift the zero-frequency component to the center of the spectrum.
|
||||
|
||||
This function swaps half-spaces for all axes listed (defaults to all).
|
||||
Note that ``y[0]`` is the Nyquist component only if ``len(x)`` is even.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to shift. Default is None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
ifftshift : The inverse of `fftshift`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> freqs = np.fft.fftfreq(10, 0.1)
|
||||
>>> freqs
|
||||
array([ 0., 1., 2., 3., 4., -5., -4., -3., -2., -1.])
|
||||
>>> np.fft.fftshift(freqs)
|
||||
array([-5., -4., -3., -2., -1., 0., 1., 2., 3., 4.])
|
||||
|
||||
Shift the zero-frequency component only along the second axis:
|
||||
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.fftshift(freqs, axes=(1,))
|
||||
array([[ 2., 0., 1.],
|
||||
[-4., 3., 4.],
|
||||
[-1., -3., -2.]])
|
||||
|
||||
"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = (n+1)//2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
|
||||
def ifftshift(x, axes=None):
|
||||
"""
|
||||
The inverse of `fftshift`. Although identical for even-length `x`, the
|
||||
functions differ by one sample for odd-length `x`.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
x : array_like
|
||||
Input array.
|
||||
axes : int or shape tuple, optional
|
||||
Axes over which to calculate. Defaults to None, which shifts all axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
y : ndarray
|
||||
The shifted array.
|
||||
|
||||
See Also
|
||||
--------
|
||||
fftshift : Shift zero-frequency component to the center of the spectrum.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> freqs = np.fft.fftfreq(9, d=1./9).reshape(3, 3)
|
||||
>>> freqs
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
>>> np.fft.ifftshift(np.fft.fftshift(freqs))
|
||||
array([[ 0., 1., 2.],
|
||||
[ 3., 4., -4.],
|
||||
[-3., -2., -1.]])
|
||||
|
||||
"""
|
||||
tmp = asarray(x)
|
||||
ndim = tmp.ndim
|
||||
if axes is None:
|
||||
axes = list(range(ndim))
|
||||
elif isinstance(axes, integer_types):
|
||||
axes = (axes,)
|
||||
y = tmp
|
||||
for k in axes:
|
||||
n = tmp.shape[k]
|
||||
p2 = n-(n+1)//2
|
||||
mylist = concatenate((arange(p2, n), arange(p2)))
|
||||
y = take(y, mylist, k)
|
||||
return y
|
||||
|
||||
|
||||
def fftfreq(n, d=1.0):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies.
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, -n/2, ..., -1] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2, -(n-1)/2, ..., -1] / (d*n) if n is odd
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length `n` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5], dtype=float)
|
||||
>>> fourier = np.fft.fft(signal)
|
||||
>>> n = signal.size
|
||||
>>> timestep = 0.1
|
||||
>>> freq = np.fft.fftfreq(n, d=timestep)
|
||||
>>> freq
|
||||
array([ 0. , 1.25, 2.5 , 3.75, -5. , -3.75, -2.5 , -1.25])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0 / (n * d)
|
||||
results = empty(n, int)
|
||||
N = (n-1)//2 + 1
|
||||
p1 = arange(0, N, dtype=int)
|
||||
results[:N] = p1
|
||||
p2 = arange(-(n//2), 0, dtype=int)
|
||||
results[N:] = p2
|
||||
return results * val
|
||||
#return hstack((arange(0,(n-1)/2 + 1), arange(-(n/2),0))) / (n*d)
|
||||
|
||||
|
||||
def rfftfreq(n, d=1.0):
|
||||
"""
|
||||
Return the Discrete Fourier Transform sample frequencies
|
||||
(for usage with rfft, irfft).
|
||||
|
||||
The returned float array `f` contains the frequency bin centers in cycles
|
||||
per unit of the sample spacing (with zero at the start). For instance, if
|
||||
the sample spacing is in seconds, then the frequency unit is cycles/second.
|
||||
|
||||
Given a window length `n` and a sample spacing `d`::
|
||||
|
||||
f = [0, 1, ..., n/2-1, n/2] / (d*n) if n is even
|
||||
f = [0, 1, ..., (n-1)/2-1, (n-1)/2] / (d*n) if n is odd
|
||||
|
||||
Unlike `fftfreq` (but like `scipy.fftpack.rfftfreq`)
|
||||
the Nyquist frequency component is considered to be positive.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Window length.
|
||||
d : scalar, optional
|
||||
Sample spacing (inverse of the sampling rate). Defaults to 1.
|
||||
|
||||
Returns
|
||||
-------
|
||||
f : ndarray
|
||||
Array of length ``n//2 + 1`` containing the sample frequencies.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> signal = np.array([-2, 8, 6, 4, 1, 0, 3, 5, -3, 4], dtype=float)
|
||||
>>> fourier = np.fft.rfft(signal)
|
||||
>>> n = signal.size
|
||||
>>> sample_rate = 100
|
||||
>>> freq = np.fft.fftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., 30., 40., -50., -40., -30., -20., -10.])
|
||||
>>> freq = np.fft.rfftfreq(n, d=1./sample_rate)
|
||||
>>> freq
|
||||
array([ 0., 10., 20., 30., 40., 50.])
|
||||
|
||||
"""
|
||||
if not isinstance(n, integer_types):
|
||||
raise ValueError("n should be an integer")
|
||||
val = 1.0/(n*d)
|
||||
N = n//2 + 1
|
||||
results = arange(0, N, dtype=int)
|
||||
return results * val
|
||||
|
||||
|
||||
class _FFTCache(object):
|
||||
"""
|
||||
Cache for the FFT twiddle factors as an LRU (least recently used) cache.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
max_size_in_mb : int
|
||||
Maximum memory usage of the cache before items are being evicted.
|
||||
max_item_count : int
|
||||
Maximum item count of the cache before items are being evicted.
|
||||
|
||||
Notes
|
||||
-----
|
||||
Items will be evicted if either limit has been reached upon getting and
|
||||
setting. The maximum memory usages is not strictly the given
|
||||
``max_size_in_mb`` but rather
|
||||
``max(max_size_in_mb, 1.5 * size_of_largest_item)``. Thus the cache will
|
||||
never be completely cleared - at least one item will remain and a single
|
||||
large item can cause the cache to retain several smaller items even if the
|
||||
given maximum cache size has been exceeded.
|
||||
"""
|
||||
def __init__(self, max_size_in_mb, max_item_count):
|
||||
self._max_size_in_bytes = max_size_in_mb * 1024 ** 2
|
||||
self._max_item_count = max_item_count
|
||||
self._dict = collections.OrderedDict()
|
||||
self._lock = threading.Lock()
|
||||
|
||||
def put_twiddle_factors(self, n, factors):
|
||||
"""
|
||||
Store twiddle factors for an FFT of length n in the cache.
|
||||
|
||||
Putting multiple twiddle factors for a certain n will store it multiple
|
||||
times.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Data length for the FFT.
|
||||
factors : ndarray
|
||||
The actual twiddle values.
|
||||
"""
|
||||
with self._lock:
|
||||
# Pop + later add to move it to the end for LRU behavior.
|
||||
# Internally everything is stored in a dictionary whose values are
|
||||
# lists.
|
||||
try:
|
||||
value = self._dict.pop(n)
|
||||
except KeyError:
|
||||
value = []
|
||||
value.append(factors)
|
||||
self._dict[n] = value
|
||||
self._prune_cache()
|
||||
|
||||
def pop_twiddle_factors(self, n):
|
||||
"""
|
||||
Pop twiddle factors for an FFT of length n from the cache.
|
||||
|
||||
Will return None if the requested twiddle factors are not available in
|
||||
the cache.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Data length for the FFT.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray or None
|
||||
The retrieved twiddle factors if available, else None.
|
||||
"""
|
||||
with self._lock:
|
||||
if n not in self._dict or not self._dict[n]:
|
||||
return None
|
||||
# Pop + later add to move it to the end for LRU behavior.
|
||||
all_values = self._dict.pop(n)
|
||||
value = all_values.pop()
|
||||
# Only put pack if there are still some arrays left in the list.
|
||||
if all_values:
|
||||
self._dict[n] = all_values
|
||||
return value
|
||||
|
||||
def _prune_cache(self):
|
||||
# Always keep at least one item.
|
||||
while len(self._dict) > 1 and (
|
||||
len(self._dict) > self._max_item_count or self._check_size()):
|
||||
self._dict.popitem(last=False)
|
||||
|
||||
def _check_size(self):
|
||||
item_sizes = [sum(_j.nbytes for _j in _i)
|
||||
for _i in self._dict.values() if _i]
|
||||
if not item_sizes:
|
||||
return False
|
||||
max_size = max(self._max_size_in_bytes, 1.5 * max(item_sizes))
|
||||
return sum(item_sizes) > max_size
|
Reference in New Issue
Block a user