mirror of
https://github.com/bvanroll/college-python-image.git
synced 2025-09-01 21:42:43 +00:00
first commit
This commit is contained in:
@@ -0,0 +1,55 @@
|
||||
"""
|
||||
Core Linear Algebra Tools
|
||||
=========================
|
||||
|
||||
=============== ==========================================================
|
||||
Linear algebra basics
|
||||
==========================================================================
|
||||
norm Vector or matrix norm
|
||||
inv Inverse of a square matrix
|
||||
solve Solve a linear system of equations
|
||||
det Determinant of a square matrix
|
||||
slogdet Logarithm of the determinant of a square matrix
|
||||
lstsq Solve linear least-squares problem
|
||||
pinv Pseudo-inverse (Moore-Penrose) calculated using a singular
|
||||
value decomposition
|
||||
matrix_power Integer power of a square matrix
|
||||
matrix_rank Calculate matrix rank using an SVD-based method
|
||||
=============== ==========================================================
|
||||
|
||||
=============== ==========================================================
|
||||
Eigenvalues and decompositions
|
||||
==========================================================================
|
||||
eig Eigenvalues and vectors of a square matrix
|
||||
eigh Eigenvalues and eigenvectors of a Hermitian matrix
|
||||
eigvals Eigenvalues of a square matrix
|
||||
eigvalsh Eigenvalues of a Hermitian matrix
|
||||
qr QR decomposition of a matrix
|
||||
svd Singular value decomposition of a matrix
|
||||
cholesky Cholesky decomposition of a matrix
|
||||
=============== ==========================================================
|
||||
|
||||
=============== ==========================================================
|
||||
Tensor operations
|
||||
==========================================================================
|
||||
tensorsolve Solve a linear tensor equation
|
||||
tensorinv Calculate an inverse of a tensor
|
||||
=============== ==========================================================
|
||||
|
||||
=============== ==========================================================
|
||||
Exceptions
|
||||
==========================================================================
|
||||
LinAlgError Indicates a failed linear algebra operation
|
||||
=============== ==========================================================
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
# To get sub-modules
|
||||
from .info import __doc__
|
||||
|
||||
from .linalg import *
|
||||
|
||||
from numpy.testing import _numpy_tester
|
||||
test = _numpy_tester().test
|
||||
bench = _numpy_tester().bench
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
37
projecten1/lib/python3.6/site-packages/numpy/linalg/info.py
Normal file
37
projecten1/lib/python3.6/site-packages/numpy/linalg/info.py
Normal file
@@ -0,0 +1,37 @@
|
||||
"""\
|
||||
Core Linear Algebra Tools
|
||||
-------------------------
|
||||
Linear algebra basics:
|
||||
|
||||
- norm Vector or matrix norm
|
||||
- inv Inverse of a square matrix
|
||||
- solve Solve a linear system of equations
|
||||
- det Determinant of a square matrix
|
||||
- lstsq Solve linear least-squares problem
|
||||
- pinv Pseudo-inverse (Moore-Penrose) calculated using a singular
|
||||
value decomposition
|
||||
- matrix_power Integer power of a square matrix
|
||||
|
||||
Eigenvalues and decompositions:
|
||||
|
||||
- eig Eigenvalues and vectors of a square matrix
|
||||
- eigh Eigenvalues and eigenvectors of a Hermitian matrix
|
||||
- eigvals Eigenvalues of a square matrix
|
||||
- eigvalsh Eigenvalues of a Hermitian matrix
|
||||
- qr QR decomposition of a matrix
|
||||
- svd Singular value decomposition of a matrix
|
||||
- cholesky Cholesky decomposition of a matrix
|
||||
|
||||
Tensor operations:
|
||||
|
||||
- tensorsolve Solve a linear tensor equation
|
||||
- tensorinv Calculate an inverse of a tensor
|
||||
|
||||
Exceptions:
|
||||
|
||||
- LinAlgError Indicates a failed linear algebra operation
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
depends = ['core']
|
Binary file not shown.
2521
projecten1/lib/python3.6/site-packages/numpy/linalg/linalg.py
Normal file
2521
projecten1/lib/python3.6/site-packages/numpy/linalg/linalg.py
Normal file
File diff suppressed because it is too large
Load Diff
60
projecten1/lib/python3.6/site-packages/numpy/linalg/setup.py
Normal file
60
projecten1/lib/python3.6/site-packages/numpy/linalg/setup.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from __future__ import division, print_function
|
||||
|
||||
import os
|
||||
import sys
|
||||
|
||||
def configuration(parent_package='', top_path=None):
|
||||
from numpy.distutils.misc_util import Configuration
|
||||
from numpy.distutils.system_info import get_info
|
||||
config = Configuration('linalg', parent_package, top_path)
|
||||
|
||||
config.add_data_dir('tests')
|
||||
|
||||
# Configure lapack_lite
|
||||
|
||||
src_dir = 'lapack_lite'
|
||||
lapack_lite_src = [
|
||||
os.path.join(src_dir, 'python_xerbla.c'),
|
||||
os.path.join(src_dir, 'f2c_z_lapack.c'),
|
||||
os.path.join(src_dir, 'f2c_c_lapack.c'),
|
||||
os.path.join(src_dir, 'f2c_d_lapack.c'),
|
||||
os.path.join(src_dir, 'f2c_s_lapack.c'),
|
||||
os.path.join(src_dir, 'f2c_lapack.c'),
|
||||
os.path.join(src_dir, 'f2c_blas.c'),
|
||||
os.path.join(src_dir, 'f2c_config.c'),
|
||||
os.path.join(src_dir, 'f2c.c'),
|
||||
]
|
||||
all_sources = config.paths(lapack_lite_src)
|
||||
|
||||
lapack_info = get_info('lapack_opt', 0) # and {}
|
||||
|
||||
def get_lapack_lite_sources(ext, build_dir):
|
||||
if not lapack_info:
|
||||
print("### Warning: Using unoptimized lapack ###")
|
||||
return all_sources
|
||||
else:
|
||||
if sys.platform == 'win32':
|
||||
print("### Warning: python_xerbla.c is disabled ###")
|
||||
return []
|
||||
return [all_sources[0]]
|
||||
|
||||
config.add_extension(
|
||||
'lapack_lite',
|
||||
sources=['lapack_litemodule.c', get_lapack_lite_sources],
|
||||
depends=['lapack_lite/f2c.h'],
|
||||
extra_info=lapack_info,
|
||||
)
|
||||
|
||||
# umath_linalg module
|
||||
config.add_extension(
|
||||
'_umath_linalg',
|
||||
sources=['umath_linalg.c.src', get_lapack_lite_sources],
|
||||
depends=['lapack_lite/f2c.h'],
|
||||
extra_info=lapack_info,
|
||||
libraries=['npymath'],
|
||||
)
|
||||
return config
|
||||
|
||||
if __name__ == '__main__':
|
||||
from numpy.distutils.core import setup
|
||||
setup(configuration=configuration)
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,57 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
from subprocess import PIPE, Popen
|
||||
import sys
|
||||
import re
|
||||
|
||||
from numpy.linalg import lapack_lite
|
||||
from numpy.testing import run_module_suite, assert_, dec
|
||||
|
||||
|
||||
class FindDependenciesLdd(object):
|
||||
|
||||
def __init__(self):
|
||||
self.cmd = ['ldd']
|
||||
|
||||
try:
|
||||
p = Popen(self.cmd, stdout=PIPE, stderr=PIPE)
|
||||
stdout, stderr = p.communicate()
|
||||
except OSError:
|
||||
raise RuntimeError("command %s cannot be run" % self.cmd)
|
||||
|
||||
def get_dependencies(self, lfile):
|
||||
p = Popen(self.cmd + [lfile], stdout=PIPE, stderr=PIPE)
|
||||
stdout, stderr = p.communicate()
|
||||
if not (p.returncode == 0):
|
||||
raise RuntimeError("failed dependencies check for %s" % lfile)
|
||||
|
||||
return stdout
|
||||
|
||||
def grep_dependencies(self, lfile, deps):
|
||||
stdout = self.get_dependencies(lfile)
|
||||
|
||||
rdeps = dict([(dep, re.compile(dep)) for dep in deps])
|
||||
founds = []
|
||||
for l in stdout.splitlines():
|
||||
for k, v in rdeps.items():
|
||||
if v.search(l):
|
||||
founds.append(k)
|
||||
|
||||
return founds
|
||||
|
||||
|
||||
class TestF77Mismatch(object):
|
||||
|
||||
@dec.skipif(not(sys.platform[:5] == 'linux'),
|
||||
"Skipping fortran compiler mismatch on non Linux platform")
|
||||
def test_lapack(self):
|
||||
f = FindDependenciesLdd()
|
||||
deps = f.grep_dependencies(lapack_lite.__file__,
|
||||
[b'libg2c', b'libgfortran'])
|
||||
assert_(len(deps) <= 1,
|
||||
"""Both g77 and gfortran runtimes linked in lapack_lite ! This is likely to
|
||||
cause random crashes and wrong results. See numpy INSTALL.txt for more
|
||||
information.""")
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,26 @@
|
||||
"""Test deprecation and future warnings.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
from numpy.testing import assert_warns, run_module_suite
|
||||
|
||||
|
||||
def test_qr_mode_full_future_warning():
|
||||
"""Check mode='full' FutureWarning.
|
||||
|
||||
In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were
|
||||
deprecated. The release date will probably be sometime in the summer
|
||||
of 2013.
|
||||
|
||||
"""
|
||||
a = np.eye(2)
|
||||
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full')
|
||||
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f')
|
||||
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic')
|
||||
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e')
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
File diff suppressed because it is too large
Load Diff
@@ -0,0 +1,154 @@
|
||||
""" Test functions for linalg module
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import warnings
|
||||
|
||||
import numpy as np
|
||||
from numpy import linalg, arange, float64, array, dot, transpose
|
||||
from numpy.testing import (
|
||||
run_module_suite, assert_, assert_raises, assert_equal, assert_array_equal,
|
||||
assert_array_almost_equal, assert_array_less
|
||||
)
|
||||
|
||||
|
||||
class TestRegression(object):
|
||||
|
||||
def test_eig_build(self):
|
||||
# Ticket #652
|
||||
rva = array([1.03221168e+02 + 0.j,
|
||||
-1.91843603e+01 + 0.j,
|
||||
-6.04004526e-01 + 15.84422474j,
|
||||
-6.04004526e-01 - 15.84422474j,
|
||||
-1.13692929e+01 + 0.j,
|
||||
-6.57612485e-01 + 10.41755503j,
|
||||
-6.57612485e-01 - 10.41755503j,
|
||||
1.82126812e+01 + 0.j,
|
||||
1.06011014e+01 + 0.j,
|
||||
7.80732773e+00 + 0.j,
|
||||
-7.65390898e-01 + 0.j,
|
||||
1.51971555e-15 + 0.j,
|
||||
-1.51308713e-15 + 0.j])
|
||||
a = arange(13 * 13, dtype=float64)
|
||||
a.shape = (13, 13)
|
||||
a = a % 17
|
||||
va, ve = linalg.eig(a)
|
||||
va.sort()
|
||||
rva.sort()
|
||||
assert_array_almost_equal(va, rva)
|
||||
|
||||
def test_eigh_build(self):
|
||||
# Ticket 662.
|
||||
rvals = [68.60568999, 89.57756725, 106.67185574]
|
||||
|
||||
cov = array([[77.70273908, 3.51489954, 15.64602427],
|
||||
[3.51489954, 88.97013878, -1.07431931],
|
||||
[15.64602427, -1.07431931, 98.18223512]])
|
||||
|
||||
vals, vecs = linalg.eigh(cov)
|
||||
assert_array_almost_equal(vals, rvals)
|
||||
|
||||
def test_svd_build(self):
|
||||
# Ticket 627.
|
||||
a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
|
||||
m, n = a.shape
|
||||
u, s, vh = linalg.svd(a)
|
||||
|
||||
b = dot(transpose(u[:, n:]), a)
|
||||
|
||||
assert_array_almost_equal(b, np.zeros((2, 2)))
|
||||
|
||||
def test_norm_vector_badarg(self):
|
||||
# Regression for #786: Froebenius norm for vectors raises
|
||||
# TypeError.
|
||||
assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
|
||||
|
||||
def test_lapack_endian(self):
|
||||
# For bug #1482
|
||||
a = array([[5.7998084, -2.1825367],
|
||||
[-2.1825367, 9.85910595]], dtype='>f8')
|
||||
b = array(a, dtype='<f8')
|
||||
|
||||
ap = linalg.cholesky(a)
|
||||
bp = linalg.cholesky(b)
|
||||
assert_array_equal(ap, bp)
|
||||
|
||||
def test_large_svd_32bit(self):
|
||||
# See gh-4442, 64bit would require very large/slow matrices.
|
||||
x = np.eye(1000, 66)
|
||||
np.linalg.svd(x)
|
||||
|
||||
def test_svd_no_uv(self):
|
||||
# gh-4733
|
||||
for shape in (3, 4), (4, 4), (4, 3):
|
||||
for t in float, complex:
|
||||
a = np.ones(shape, dtype=t)
|
||||
w = linalg.svd(a, compute_uv=False)
|
||||
c = np.count_nonzero(np.absolute(w) > 0.5)
|
||||
assert_equal(c, 1)
|
||||
assert_equal(np.linalg.matrix_rank(a), 1)
|
||||
assert_array_less(1, np.linalg.norm(a, ord=2))
|
||||
|
||||
def test_norm_object_array(self):
|
||||
# gh-7575
|
||||
testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
|
||||
|
||||
norm = linalg.norm(testvector)
|
||||
assert_array_equal(norm, [0, 1])
|
||||
assert_(norm.dtype == np.dtype('float64'))
|
||||
|
||||
norm = linalg.norm(testvector, ord=1)
|
||||
assert_array_equal(norm, [0, 1])
|
||||
assert_(norm.dtype != np.dtype('float64'))
|
||||
|
||||
norm = linalg.norm(testvector, ord=2)
|
||||
assert_array_equal(norm, [0, 1])
|
||||
assert_(norm.dtype == np.dtype('float64'))
|
||||
|
||||
assert_raises(ValueError, linalg.norm, testvector, ord='fro')
|
||||
assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
|
||||
assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
|
||||
assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
|
||||
with warnings.catch_warnings():
|
||||
warnings.simplefilter("error", DeprecationWarning)
|
||||
assert_raises((AttributeError, DeprecationWarning),
|
||||
linalg.norm, testvector, ord=0)
|
||||
assert_raises(ValueError, linalg.norm, testvector, ord=-1)
|
||||
assert_raises(ValueError, linalg.norm, testvector, ord=-2)
|
||||
|
||||
testmatrix = np.array([[np.array([0, 1]), 0, 0],
|
||||
[0, 0, 0]], dtype=object)
|
||||
|
||||
norm = linalg.norm(testmatrix)
|
||||
assert_array_equal(norm, [0, 1])
|
||||
assert_(norm.dtype == np.dtype('float64'))
|
||||
|
||||
norm = linalg.norm(testmatrix, ord='fro')
|
||||
assert_array_equal(norm, [0, 1])
|
||||
assert_(norm.dtype == np.dtype('float64'))
|
||||
|
||||
assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
|
||||
assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
|
||||
assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
|
||||
assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
|
||||
assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
|
||||
assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
|
||||
assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
|
||||
assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
|
||||
assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
|
||||
|
||||
def test_lstsq_complex_larger_rhs(self):
|
||||
# gh-9891
|
||||
size = 20
|
||||
n_rhs = 70
|
||||
G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
|
||||
u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
|
||||
b = G.dot(u)
|
||||
# This should work without segmentation fault.
|
||||
u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
|
||||
# check results just in case
|
||||
assert_array_almost_equal(u_lstsq, u)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
run_module_suite()
|
Reference in New Issue
Block a user