first commit

This commit is contained in:
2018-07-24 15:40:59 +02:00
commit d0d03faed9
1884 changed files with 366061 additions and 0 deletions

View File

@@ -0,0 +1,55 @@
"""
Core Linear Algebra Tools
=========================
=============== ==========================================================
Linear algebra basics
==========================================================================
norm Vector or matrix norm
inv Inverse of a square matrix
solve Solve a linear system of equations
det Determinant of a square matrix
slogdet Logarithm of the determinant of a square matrix
lstsq Solve linear least-squares problem
pinv Pseudo-inverse (Moore-Penrose) calculated using a singular
value decomposition
matrix_power Integer power of a square matrix
matrix_rank Calculate matrix rank using an SVD-based method
=============== ==========================================================
=============== ==========================================================
Eigenvalues and decompositions
==========================================================================
eig Eigenvalues and vectors of a square matrix
eigh Eigenvalues and eigenvectors of a Hermitian matrix
eigvals Eigenvalues of a square matrix
eigvalsh Eigenvalues of a Hermitian matrix
qr QR decomposition of a matrix
svd Singular value decomposition of a matrix
cholesky Cholesky decomposition of a matrix
=============== ==========================================================
=============== ==========================================================
Tensor operations
==========================================================================
tensorsolve Solve a linear tensor equation
tensorinv Calculate an inverse of a tensor
=============== ==========================================================
=============== ==========================================================
Exceptions
==========================================================================
LinAlgError Indicates a failed linear algebra operation
=============== ==========================================================
"""
from __future__ import division, absolute_import, print_function
# To get sub-modules
from .info import __doc__
from .linalg import *
from numpy.testing import _numpy_tester
test = _numpy_tester().test
bench = _numpy_tester().bench

View File

@@ -0,0 +1,37 @@
"""\
Core Linear Algebra Tools
-------------------------
Linear algebra basics:
- norm Vector or matrix norm
- inv Inverse of a square matrix
- solve Solve a linear system of equations
- det Determinant of a square matrix
- lstsq Solve linear least-squares problem
- pinv Pseudo-inverse (Moore-Penrose) calculated using a singular
value decomposition
- matrix_power Integer power of a square matrix
Eigenvalues and decompositions:
- eig Eigenvalues and vectors of a square matrix
- eigh Eigenvalues and eigenvectors of a Hermitian matrix
- eigvals Eigenvalues of a square matrix
- eigvalsh Eigenvalues of a Hermitian matrix
- qr QR decomposition of a matrix
- svd Singular value decomposition of a matrix
- cholesky Cholesky decomposition of a matrix
Tensor operations:
- tensorsolve Solve a linear tensor equation
- tensorinv Calculate an inverse of a tensor
Exceptions:
- LinAlgError Indicates a failed linear algebra operation
"""
from __future__ import division, absolute_import, print_function
depends = ['core']

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,60 @@
from __future__ import division, print_function
import os
import sys
def configuration(parent_package='', top_path=None):
from numpy.distutils.misc_util import Configuration
from numpy.distutils.system_info import get_info
config = Configuration('linalg', parent_package, top_path)
config.add_data_dir('tests')
# Configure lapack_lite
src_dir = 'lapack_lite'
lapack_lite_src = [
os.path.join(src_dir, 'python_xerbla.c'),
os.path.join(src_dir, 'f2c_z_lapack.c'),
os.path.join(src_dir, 'f2c_c_lapack.c'),
os.path.join(src_dir, 'f2c_d_lapack.c'),
os.path.join(src_dir, 'f2c_s_lapack.c'),
os.path.join(src_dir, 'f2c_lapack.c'),
os.path.join(src_dir, 'f2c_blas.c'),
os.path.join(src_dir, 'f2c_config.c'),
os.path.join(src_dir, 'f2c.c'),
]
all_sources = config.paths(lapack_lite_src)
lapack_info = get_info('lapack_opt', 0) # and {}
def get_lapack_lite_sources(ext, build_dir):
if not lapack_info:
print("### Warning: Using unoptimized lapack ###")
return all_sources
else:
if sys.platform == 'win32':
print("### Warning: python_xerbla.c is disabled ###")
return []
return [all_sources[0]]
config.add_extension(
'lapack_lite',
sources=['lapack_litemodule.c', get_lapack_lite_sources],
depends=['lapack_lite/f2c.h'],
extra_info=lapack_info,
)
# umath_linalg module
config.add_extension(
'_umath_linalg',
sources=['umath_linalg.c.src', get_lapack_lite_sources],
depends=['lapack_lite/f2c.h'],
extra_info=lapack_info,
libraries=['npymath'],
)
return config
if __name__ == '__main__':
from numpy.distutils.core import setup
setup(configuration=configuration)

View File

@@ -0,0 +1,57 @@
from __future__ import division, absolute_import, print_function
from subprocess import PIPE, Popen
import sys
import re
from numpy.linalg import lapack_lite
from numpy.testing import run_module_suite, assert_, dec
class FindDependenciesLdd(object):
def __init__(self):
self.cmd = ['ldd']
try:
p = Popen(self.cmd, stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
except OSError:
raise RuntimeError("command %s cannot be run" % self.cmd)
def get_dependencies(self, lfile):
p = Popen(self.cmd + [lfile], stdout=PIPE, stderr=PIPE)
stdout, stderr = p.communicate()
if not (p.returncode == 0):
raise RuntimeError("failed dependencies check for %s" % lfile)
return stdout
def grep_dependencies(self, lfile, deps):
stdout = self.get_dependencies(lfile)
rdeps = dict([(dep, re.compile(dep)) for dep in deps])
founds = []
for l in stdout.splitlines():
for k, v in rdeps.items():
if v.search(l):
founds.append(k)
return founds
class TestF77Mismatch(object):
@dec.skipif(not(sys.platform[:5] == 'linux'),
"Skipping fortran compiler mismatch on non Linux platform")
def test_lapack(self):
f = FindDependenciesLdd()
deps = f.grep_dependencies(lapack_lite.__file__,
[b'libg2c', b'libgfortran'])
assert_(len(deps) <= 1,
"""Both g77 and gfortran runtimes linked in lapack_lite ! This is likely to
cause random crashes and wrong results. See numpy INSTALL.txt for more
information.""")
if __name__ == "__main__":
run_module_suite()

View File

@@ -0,0 +1,26 @@
"""Test deprecation and future warnings.
"""
from __future__ import division, absolute_import, print_function
import numpy as np
from numpy.testing import assert_warns, run_module_suite
def test_qr_mode_full_future_warning():
"""Check mode='full' FutureWarning.
In numpy 1.8 the mode options 'full' and 'economic' in linalg.qr were
deprecated. The release date will probably be sometime in the summer
of 2013.
"""
a = np.eye(2)
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='full')
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='f')
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='economic')
assert_warns(DeprecationWarning, np.linalg.qr, a, mode='e')
if __name__ == "__main__":
run_module_suite()

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,154 @@
""" Test functions for linalg module
"""
from __future__ import division, absolute_import, print_function
import warnings
import numpy as np
from numpy import linalg, arange, float64, array, dot, transpose
from numpy.testing import (
run_module_suite, assert_, assert_raises, assert_equal, assert_array_equal,
assert_array_almost_equal, assert_array_less
)
class TestRegression(object):
def test_eig_build(self):
# Ticket #652
rva = array([1.03221168e+02 + 0.j,
-1.91843603e+01 + 0.j,
-6.04004526e-01 + 15.84422474j,
-6.04004526e-01 - 15.84422474j,
-1.13692929e+01 + 0.j,
-6.57612485e-01 + 10.41755503j,
-6.57612485e-01 - 10.41755503j,
1.82126812e+01 + 0.j,
1.06011014e+01 + 0.j,
7.80732773e+00 + 0.j,
-7.65390898e-01 + 0.j,
1.51971555e-15 + 0.j,
-1.51308713e-15 + 0.j])
a = arange(13 * 13, dtype=float64)
a.shape = (13, 13)
a = a % 17
va, ve = linalg.eig(a)
va.sort()
rva.sort()
assert_array_almost_equal(va, rva)
def test_eigh_build(self):
# Ticket 662.
rvals = [68.60568999, 89.57756725, 106.67185574]
cov = array([[77.70273908, 3.51489954, 15.64602427],
[3.51489954, 88.97013878, -1.07431931],
[15.64602427, -1.07431931, 98.18223512]])
vals, vecs = linalg.eigh(cov)
assert_array_almost_equal(vals, rvals)
def test_svd_build(self):
# Ticket 627.
a = array([[0., 1.], [1., 1.], [2., 1.], [3., 1.]])
m, n = a.shape
u, s, vh = linalg.svd(a)
b = dot(transpose(u[:, n:]), a)
assert_array_almost_equal(b, np.zeros((2, 2)))
def test_norm_vector_badarg(self):
# Regression for #786: Froebenius norm for vectors raises
# TypeError.
assert_raises(ValueError, linalg.norm, array([1., 2., 3.]), 'fro')
def test_lapack_endian(self):
# For bug #1482
a = array([[5.7998084, -2.1825367],
[-2.1825367, 9.85910595]], dtype='>f8')
b = array(a, dtype='<f8')
ap = linalg.cholesky(a)
bp = linalg.cholesky(b)
assert_array_equal(ap, bp)
def test_large_svd_32bit(self):
# See gh-4442, 64bit would require very large/slow matrices.
x = np.eye(1000, 66)
np.linalg.svd(x)
def test_svd_no_uv(self):
# gh-4733
for shape in (3, 4), (4, 4), (4, 3):
for t in float, complex:
a = np.ones(shape, dtype=t)
w = linalg.svd(a, compute_uv=False)
c = np.count_nonzero(np.absolute(w) > 0.5)
assert_equal(c, 1)
assert_equal(np.linalg.matrix_rank(a), 1)
assert_array_less(1, np.linalg.norm(a, ord=2))
def test_norm_object_array(self):
# gh-7575
testvector = np.array([np.array([0, 1]), 0, 0], dtype=object)
norm = linalg.norm(testvector)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
norm = linalg.norm(testvector, ord=1)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype != np.dtype('float64'))
norm = linalg.norm(testvector, ord=2)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
assert_raises(ValueError, linalg.norm, testvector, ord='fro')
assert_raises(ValueError, linalg.norm, testvector, ord='nuc')
assert_raises(ValueError, linalg.norm, testvector, ord=np.inf)
assert_raises(ValueError, linalg.norm, testvector, ord=-np.inf)
with warnings.catch_warnings():
warnings.simplefilter("error", DeprecationWarning)
assert_raises((AttributeError, DeprecationWarning),
linalg.norm, testvector, ord=0)
assert_raises(ValueError, linalg.norm, testvector, ord=-1)
assert_raises(ValueError, linalg.norm, testvector, ord=-2)
testmatrix = np.array([[np.array([0, 1]), 0, 0],
[0, 0, 0]], dtype=object)
norm = linalg.norm(testmatrix)
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
norm = linalg.norm(testmatrix, ord='fro')
assert_array_equal(norm, [0, 1])
assert_(norm.dtype == np.dtype('float64'))
assert_raises(TypeError, linalg.norm, testmatrix, ord='nuc')
assert_raises(ValueError, linalg.norm, testmatrix, ord=np.inf)
assert_raises(ValueError, linalg.norm, testmatrix, ord=-np.inf)
assert_raises(ValueError, linalg.norm, testmatrix, ord=0)
assert_raises(ValueError, linalg.norm, testmatrix, ord=1)
assert_raises(ValueError, linalg.norm, testmatrix, ord=-1)
assert_raises(TypeError, linalg.norm, testmatrix, ord=2)
assert_raises(TypeError, linalg.norm, testmatrix, ord=-2)
assert_raises(ValueError, linalg.norm, testmatrix, ord=3)
def test_lstsq_complex_larger_rhs(self):
# gh-9891
size = 20
n_rhs = 70
G = np.random.randn(size, size) + 1j * np.random.randn(size, size)
u = np.random.randn(size, n_rhs) + 1j * np.random.randn(size, n_rhs)
b = G.dot(u)
# This should work without segmentation fault.
u_lstsq, res, rank, sv = linalg.lstsq(G, b, rcond=None)
# check results just in case
assert_array_almost_equal(u_lstsq, u)
if __name__ == '__main__':
run_module_suite()