mirror of
https://github.com/bvanroll/college-python-image.git
synced 2025-09-01 05:22:50 +00:00
first commit
This commit is contained in:
363
projecten1/lib/python3.6/site-packages/numpy/matlib.py
Normal file
363
projecten1/lib/python3.6/site-packages/numpy/matlib.py
Normal file
@@ -0,0 +1,363 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
from numpy.matrixlib.defmatrix import matrix, asmatrix
|
||||
# need * as we're copying the numpy namespace
|
||||
from numpy import *
|
||||
|
||||
__version__ = np.__version__
|
||||
|
||||
__all__ = np.__all__[:] # copy numpy namespace
|
||||
__all__ += ['rand', 'randn', 'repmat']
|
||||
|
||||
def empty(shape, dtype=None, order='C'):
|
||||
"""Return a new matrix of given shape and type, without initializing entries.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : int or tuple of int
|
||||
Shape of the empty matrix.
|
||||
dtype : data-type, optional
|
||||
Desired output data-type.
|
||||
order : {'C', 'F'}, optional
|
||||
Whether to store multi-dimensional data in row-major
|
||||
(C-style) or column-major (Fortran-style) order in
|
||||
memory.
|
||||
|
||||
See Also
|
||||
--------
|
||||
empty_like, zeros
|
||||
|
||||
Notes
|
||||
-----
|
||||
`empty`, unlike `zeros`, does not set the matrix values to zero,
|
||||
and may therefore be marginally faster. On the other hand, it requires
|
||||
the user to manually set all the values in the array, and should be
|
||||
used with caution.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> np.matlib.empty((2, 2)) # filled with random data
|
||||
matrix([[ 6.76425276e-320, 9.79033856e-307],
|
||||
[ 7.39337286e-309, 3.22135945e-309]]) #random
|
||||
>>> np.matlib.empty((2, 2), dtype=int)
|
||||
matrix([[ 6600475, 0],
|
||||
[ 6586976, 22740995]]) #random
|
||||
|
||||
"""
|
||||
return ndarray.__new__(matrix, shape, dtype, order=order)
|
||||
|
||||
def ones(shape, dtype=None, order='C'):
|
||||
"""
|
||||
Matrix of ones.
|
||||
|
||||
Return a matrix of given shape and type, filled with ones.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : {sequence of ints, int}
|
||||
Shape of the matrix
|
||||
dtype : data-type, optional
|
||||
The desired data-type for the matrix, default is np.float64.
|
||||
order : {'C', 'F'}, optional
|
||||
Whether to store matrix in C- or Fortran-contiguous order,
|
||||
default is 'C'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : matrix
|
||||
Matrix of ones of given shape, dtype, and order.
|
||||
|
||||
See Also
|
||||
--------
|
||||
ones : Array of ones.
|
||||
matlib.zeros : Zero matrix.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``,
|
||||
`out` becomes a single row matrix of shape ``(1,N)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> np.matlib.ones((2,3))
|
||||
matrix([[ 1., 1., 1.],
|
||||
[ 1., 1., 1.]])
|
||||
|
||||
>>> np.matlib.ones(2)
|
||||
matrix([[ 1., 1.]])
|
||||
|
||||
"""
|
||||
a = ndarray.__new__(matrix, shape, dtype, order=order)
|
||||
a.fill(1)
|
||||
return a
|
||||
|
||||
def zeros(shape, dtype=None, order='C'):
|
||||
"""
|
||||
Return a matrix of given shape and type, filled with zeros.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
shape : int or sequence of ints
|
||||
Shape of the matrix
|
||||
dtype : data-type, optional
|
||||
The desired data-type for the matrix, default is float.
|
||||
order : {'C', 'F'}, optional
|
||||
Whether to store the result in C- or Fortran-contiguous order,
|
||||
default is 'C'.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : matrix
|
||||
Zero matrix of given shape, dtype, and order.
|
||||
|
||||
See Also
|
||||
--------
|
||||
numpy.zeros : Equivalent array function.
|
||||
matlib.ones : Return a matrix of ones.
|
||||
|
||||
Notes
|
||||
-----
|
||||
If `shape` has length one i.e. ``(N,)``, or is a scalar ``N``,
|
||||
`out` becomes a single row matrix of shape ``(1,N)``.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> np.matlib.zeros((2, 3))
|
||||
matrix([[ 0., 0., 0.],
|
||||
[ 0., 0., 0.]])
|
||||
|
||||
>>> np.matlib.zeros(2)
|
||||
matrix([[ 0., 0.]])
|
||||
|
||||
"""
|
||||
a = ndarray.__new__(matrix, shape, dtype, order=order)
|
||||
a.fill(0)
|
||||
return a
|
||||
|
||||
def identity(n,dtype=None):
|
||||
"""
|
||||
Returns the square identity matrix of given size.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Size of the returned identity matrix.
|
||||
dtype : data-type, optional
|
||||
Data-type of the output. Defaults to ``float``.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : matrix
|
||||
`n` x `n` matrix with its main diagonal set to one,
|
||||
and all other elements zero.
|
||||
|
||||
See Also
|
||||
--------
|
||||
numpy.identity : Equivalent array function.
|
||||
matlib.eye : More general matrix identity function.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> np.matlib.identity(3, dtype=int)
|
||||
matrix([[1, 0, 0],
|
||||
[0, 1, 0],
|
||||
[0, 0, 1]])
|
||||
|
||||
"""
|
||||
a = array([1]+n*[0], dtype=dtype)
|
||||
b = empty((n, n), dtype=dtype)
|
||||
b.flat = a
|
||||
return b
|
||||
|
||||
def eye(n,M=None, k=0, dtype=float, order='C'):
|
||||
"""
|
||||
Return a matrix with ones on the diagonal and zeros elsewhere.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
n : int
|
||||
Number of rows in the output.
|
||||
M : int, optional
|
||||
Number of columns in the output, defaults to `n`.
|
||||
k : int, optional
|
||||
Index of the diagonal: 0 refers to the main diagonal,
|
||||
a positive value refers to an upper diagonal,
|
||||
and a negative value to a lower diagonal.
|
||||
dtype : dtype, optional
|
||||
Data-type of the returned matrix.
|
||||
order : {'C', 'F'}, optional
|
||||
Whether the output should be stored in row-major (C-style) or
|
||||
column-major (Fortran-style) order in memory.
|
||||
|
||||
.. versionadded:: 1.14.0
|
||||
|
||||
Returns
|
||||
-------
|
||||
I : matrix
|
||||
A `n` x `M` matrix where all elements are equal to zero,
|
||||
except for the `k`-th diagonal, whose values are equal to one.
|
||||
|
||||
See Also
|
||||
--------
|
||||
numpy.eye : Equivalent array function.
|
||||
identity : Square identity matrix.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> np.matlib.eye(3, k=1, dtype=float)
|
||||
matrix([[ 0., 1., 0.],
|
||||
[ 0., 0., 1.],
|
||||
[ 0., 0., 0.]])
|
||||
|
||||
"""
|
||||
return asmatrix(np.eye(n, M=M, k=k, dtype=dtype, order=order))
|
||||
|
||||
def rand(*args):
|
||||
"""
|
||||
Return a matrix of random values with given shape.
|
||||
|
||||
Create a matrix of the given shape and propagate it with
|
||||
random samples from a uniform distribution over ``[0, 1)``.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
\\*args : Arguments
|
||||
Shape of the output.
|
||||
If given as N integers, each integer specifies the size of one
|
||||
dimension.
|
||||
If given as a tuple, this tuple gives the complete shape.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
The matrix of random values with shape given by `\\*args`.
|
||||
|
||||
See Also
|
||||
--------
|
||||
randn, numpy.random.rand
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> np.matlib.rand(2, 3)
|
||||
matrix([[ 0.68340382, 0.67926887, 0.83271405],
|
||||
[ 0.00793551, 0.20468222, 0.95253525]]) #random
|
||||
>>> np.matlib.rand((2, 3))
|
||||
matrix([[ 0.84682055, 0.73626594, 0.11308016],
|
||||
[ 0.85429008, 0.3294825 , 0.89139555]]) #random
|
||||
|
||||
If the first argument is a tuple, other arguments are ignored:
|
||||
|
||||
>>> np.matlib.rand((2, 3), 4)
|
||||
matrix([[ 0.46898646, 0.15163588, 0.95188261],
|
||||
[ 0.59208621, 0.09561818, 0.00583606]]) #random
|
||||
|
||||
"""
|
||||
if isinstance(args[0], tuple):
|
||||
args = args[0]
|
||||
return asmatrix(np.random.rand(*args))
|
||||
|
||||
def randn(*args):
|
||||
"""
|
||||
Return a random matrix with data from the "standard normal" distribution.
|
||||
|
||||
`randn` generates a matrix filled with random floats sampled from a
|
||||
univariate "normal" (Gaussian) distribution of mean 0 and variance 1.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
\\*args : Arguments
|
||||
Shape of the output.
|
||||
If given as N integers, each integer specifies the size of one
|
||||
dimension. If given as a tuple, this tuple gives the complete shape.
|
||||
|
||||
Returns
|
||||
-------
|
||||
Z : matrix of floats
|
||||
A matrix of floating-point samples drawn from the standard normal
|
||||
distribution.
|
||||
|
||||
See Also
|
||||
--------
|
||||
rand, random.randn
|
||||
|
||||
Notes
|
||||
-----
|
||||
For random samples from :math:`N(\\mu, \\sigma^2)`, use:
|
||||
|
||||
``sigma * np.matlib.randn(...) + mu``
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> np.matlib.randn(1)
|
||||
matrix([[-0.09542833]]) #random
|
||||
>>> np.matlib.randn(1, 2, 3)
|
||||
matrix([[ 0.16198284, 0.0194571 , 0.18312985],
|
||||
[-0.7509172 , 1.61055 , 0.45298599]]) #random
|
||||
|
||||
Two-by-four matrix of samples from :math:`N(3, 6.25)`:
|
||||
|
||||
>>> 2.5 * np.matlib.randn((2, 4)) + 3
|
||||
matrix([[ 4.74085004, 8.89381862, 4.09042411, 4.83721922],
|
||||
[ 7.52373709, 5.07933944, -2.64043543, 0.45610557]]) #random
|
||||
|
||||
"""
|
||||
if isinstance(args[0], tuple):
|
||||
args = args[0]
|
||||
return asmatrix(np.random.randn(*args))
|
||||
|
||||
def repmat(a, m, n):
|
||||
"""
|
||||
Repeat a 0-D to 2-D array or matrix MxN times.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
a : array_like
|
||||
The array or matrix to be repeated.
|
||||
m, n : int
|
||||
The number of times `a` is repeated along the first and second axes.
|
||||
|
||||
Returns
|
||||
-------
|
||||
out : ndarray
|
||||
The result of repeating `a`.
|
||||
|
||||
Examples
|
||||
--------
|
||||
>>> import numpy.matlib
|
||||
>>> a0 = np.array(1)
|
||||
>>> np.matlib.repmat(a0, 2, 3)
|
||||
array([[1, 1, 1],
|
||||
[1, 1, 1]])
|
||||
|
||||
>>> a1 = np.arange(4)
|
||||
>>> np.matlib.repmat(a1, 2, 2)
|
||||
array([[0, 1, 2, 3, 0, 1, 2, 3],
|
||||
[0, 1, 2, 3, 0, 1, 2, 3]])
|
||||
|
||||
>>> a2 = np.asmatrix(np.arange(6).reshape(2, 3))
|
||||
>>> np.matlib.repmat(a2, 2, 3)
|
||||
matrix([[0, 1, 2, 0, 1, 2, 0, 1, 2],
|
||||
[3, 4, 5, 3, 4, 5, 3, 4, 5],
|
||||
[0, 1, 2, 0, 1, 2, 0, 1, 2],
|
||||
[3, 4, 5, 3, 4, 5, 3, 4, 5]])
|
||||
|
||||
"""
|
||||
a = asanyarray(a)
|
||||
ndim = a.ndim
|
||||
if ndim == 0:
|
||||
origrows, origcols = (1, 1)
|
||||
elif ndim == 1:
|
||||
origrows, origcols = (1, a.shape[0])
|
||||
else:
|
||||
origrows, origcols = a.shape
|
||||
rows = origrows * m
|
||||
cols = origcols * n
|
||||
c = a.reshape(1, a.size).repeat(m, 0).reshape(rows, origcols).repeat(n, 0)
|
||||
return c.reshape(rows, cols)
|
Reference in New Issue
Block a user