mirror of
https://github.com/bvanroll/college-python-image.git
synced 2025-09-03 14:22:47 +00:00
first commit
This commit is contained in:
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
@@ -0,0 +1,614 @@
|
||||
"""Tests for chebyshev module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.chebyshev as cheb
|
||||
from numpy.polynomial.polynomial import polyval
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
|
||||
def trim(x):
|
||||
return cheb.chebtrim(x, tol=1e-6)
|
||||
|
||||
T0 = [1]
|
||||
T1 = [0, 1]
|
||||
T2 = [-1, 0, 2]
|
||||
T3 = [0, -3, 0, 4]
|
||||
T4 = [1, 0, -8, 0, 8]
|
||||
T5 = [0, 5, 0, -20, 0, 16]
|
||||
T6 = [-1, 0, 18, 0, -48, 0, 32]
|
||||
T7 = [0, -7, 0, 56, 0, -112, 0, 64]
|
||||
T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
|
||||
T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
|
||||
|
||||
Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
|
||||
|
||||
|
||||
class TestPrivate(object):
|
||||
|
||||
def test__cseries_to_zseries(self):
|
||||
for i in range(5):
|
||||
inp = np.array([2] + [1]*i, np.double)
|
||||
tgt = np.array([.5]*i + [2] + [.5]*i, np.double)
|
||||
res = cheb._cseries_to_zseries(inp)
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test__zseries_to_cseries(self):
|
||||
for i in range(5):
|
||||
inp = np.array([.5]*i + [2] + [.5]*i, np.double)
|
||||
tgt = np.array([2] + [1]*i, np.double)
|
||||
res = cheb._zseries_to_cseries(inp)
|
||||
assert_equal(res, tgt)
|
||||
|
||||
|
||||
class TestConstants(object):
|
||||
|
||||
def test_chebdomain(self):
|
||||
assert_equal(cheb.chebdomain, [-1, 1])
|
||||
|
||||
def test_chebzero(self):
|
||||
assert_equal(cheb.chebzero, [0])
|
||||
|
||||
def test_chebone(self):
|
||||
assert_equal(cheb.chebone, [1])
|
||||
|
||||
def test_chebx(self):
|
||||
assert_equal(cheb.chebx, [0, 1])
|
||||
|
||||
|
||||
class TestArithmetic(object):
|
||||
|
||||
def test_chebadd(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] += 1
|
||||
res = cheb.chebadd([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_chebsub(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] -= 1
|
||||
res = cheb.chebsub([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_chebmulx(self):
|
||||
assert_equal(cheb.chebmulx([0]), [0])
|
||||
assert_equal(cheb.chebmulx([1]), [0, 1])
|
||||
for i in range(1, 5):
|
||||
ser = [0]*i + [1]
|
||||
tgt = [0]*(i - 1) + [.5, 0, .5]
|
||||
assert_equal(cheb.chebmulx(ser), tgt)
|
||||
|
||||
def test_chebmul(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(i + j + 1)
|
||||
tgt[i + j] += .5
|
||||
tgt[abs(i - j)] += .5
|
||||
res = cheb.chebmul([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_chebdiv(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
ci = [0]*i + [1]
|
||||
cj = [0]*j + [1]
|
||||
tgt = cheb.chebadd(ci, cj)
|
||||
quo, rem = cheb.chebdiv(tgt, ci)
|
||||
res = cheb.chebadd(cheb.chebmul(quo, ci), rem)
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
|
||||
class TestEvaluation(object):
|
||||
# coefficients of 1 + 2*x + 3*x**2
|
||||
c1d = np.array([2.5, 2., 1.5])
|
||||
c2d = np.einsum('i,j->ij', c1d, c1d)
|
||||
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
|
||||
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
y = polyval(x, [1., 2., 3.])
|
||||
|
||||
def test_chebval(self):
|
||||
#check empty input
|
||||
assert_equal(cheb.chebval([], [1]).size, 0)
|
||||
|
||||
#check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [polyval(x, c) for c in Tlist]
|
||||
for i in range(10):
|
||||
msg = "At i=%d" % i
|
||||
tgt = y[i]
|
||||
res = cheb.chebval(x, [0]*i + [1])
|
||||
assert_almost_equal(res, tgt, err_msg=msg)
|
||||
|
||||
#check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(cheb.chebval(x, [1]).shape, dims)
|
||||
assert_equal(cheb.chebval(x, [1, 0]).shape, dims)
|
||||
assert_equal(cheb.chebval(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
def test_chebval2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, cheb.chebval2d, x1, x2[:2], self.c2d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2
|
||||
res = cheb.chebval2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = cheb.chebval2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_chebval3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, cheb.chebval3d, x1, x2, x3[:2], self.c3d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2*y3
|
||||
res = cheb.chebval3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = cheb.chebval3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_chebgrid2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j->ij', y1, y2)
|
||||
res = cheb.chebgrid2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = cheb.chebgrid2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3)*2)
|
||||
|
||||
def test_chebgrid3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
|
||||
res = cheb.chebgrid3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = cheb.chebgrid3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3)*3)
|
||||
|
||||
|
||||
class TestIntegral(object):
|
||||
|
||||
def test_chebint(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, cheb.chebint, [0], .5)
|
||||
assert_raises(ValueError, cheb.chebint, [0], -1)
|
||||
assert_raises(ValueError, cheb.chebint, [0], 1, [0, 0])
|
||||
assert_raises(ValueError, cheb.chebint, [0], lbnd=[0])
|
||||
assert_raises(ValueError, cheb.chebint, [0], scl=[0])
|
||||
assert_raises(ValueError, cheb.chebint, [0], axis=.5)
|
||||
|
||||
# test integration of zero polynomial
|
||||
for i in range(2, 5):
|
||||
k = [0]*(i - 2) + [1]
|
||||
res = cheb.chebint([0], m=i, k=k)
|
||||
assert_almost_equal(res, [0, 1])
|
||||
|
||||
# check single integration with integration constant
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [1/scl]
|
||||
chebpol = cheb.poly2cheb(pol)
|
||||
chebint = cheb.chebint(chebpol, m=1, k=[i])
|
||||
res = cheb.cheb2poly(chebint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check single integration with integration constant and lbnd
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
chebpol = cheb.poly2cheb(pol)
|
||||
chebint = cheb.chebint(chebpol, m=1, k=[i], lbnd=-1)
|
||||
assert_almost_equal(cheb.chebval(-1, chebint), i)
|
||||
|
||||
# check single integration with integration constant and scaling
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [2/scl]
|
||||
chebpol = cheb.poly2cheb(pol)
|
||||
chebint = cheb.chebint(chebpol, m=1, k=[i], scl=2)
|
||||
res = cheb.cheb2poly(chebint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with default k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = cheb.chebint(tgt, m=1)
|
||||
res = cheb.chebint(pol, m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with defined k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = cheb.chebint(tgt, m=1, k=[k])
|
||||
res = cheb.chebint(pol, m=j, k=list(range(j)))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with lbnd
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = cheb.chebint(tgt, m=1, k=[k], lbnd=-1)
|
||||
res = cheb.chebint(pol, m=j, k=list(range(j)), lbnd=-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = cheb.chebint(tgt, m=1, k=[k], scl=2)
|
||||
res = cheb.chebint(pol, m=j, k=list(range(j)), scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_chebint_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([cheb.chebint(c) for c in c2d.T]).T
|
||||
res = cheb.chebint(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([cheb.chebint(c) for c in c2d])
|
||||
res = cheb.chebint(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([cheb.chebint(c, k=3) for c in c2d])
|
||||
res = cheb.chebint(c2d, k=3, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestDerivative(object):
|
||||
|
||||
def test_chebder(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, cheb.chebder, [0], .5)
|
||||
assert_raises(ValueError, cheb.chebder, [0], -1)
|
||||
|
||||
# check that zeroth derivative does nothing
|
||||
for i in range(5):
|
||||
tgt = [0]*i + [1]
|
||||
res = cheb.chebder(tgt, m=0)
|
||||
assert_equal(trim(res), trim(tgt))
|
||||
|
||||
# check that derivation is the inverse of integration
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = cheb.chebder(cheb.chebint(tgt, m=j), m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check derivation with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = cheb.chebder(cheb.chebint(tgt, m=j, scl=2), m=j, scl=.5)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_chebder_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([cheb.chebder(c) for c in c2d.T]).T
|
||||
res = cheb.chebder(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([cheb.chebder(c) for c in c2d])
|
||||
res = cheb.chebder(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestVander(object):
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
|
||||
def test_chebvander(self):
|
||||
# check for 1d x
|
||||
x = np.arange(3)
|
||||
v = cheb.chebvander(x, 3)
|
||||
assert_(v.shape == (3, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], cheb.chebval(x, coef))
|
||||
|
||||
# check for 2d x
|
||||
x = np.array([[1, 2], [3, 4], [5, 6]])
|
||||
v = cheb.chebvander(x, 3)
|
||||
assert_(v.shape == (3, 2, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], cheb.chebval(x, coef))
|
||||
|
||||
def test_chebvander2d(self):
|
||||
# also tests chebval2d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3))
|
||||
van = cheb.chebvander2d(x1, x2, [1, 2])
|
||||
tgt = cheb.chebval2d(x1, x2, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = cheb.chebvander2d([x1], [x2], [1, 2])
|
||||
assert_(van.shape == (1, 5, 6))
|
||||
|
||||
def test_chebvander3d(self):
|
||||
# also tests chebval3d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3, 4))
|
||||
van = cheb.chebvander3d(x1, x2, x3, [1, 2, 3])
|
||||
tgt = cheb.chebval3d(x1, x2, x3, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = cheb.chebvander3d([x1], [x2], [x3], [1, 2, 3])
|
||||
assert_(van.shape == (1, 5, 24))
|
||||
|
||||
|
||||
class TestFitting(object):
|
||||
|
||||
def test_chebfit(self):
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
|
||||
def f2(x):
|
||||
return x**4 + x**2 + 1
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, cheb.chebfit, [1], [1], -1)
|
||||
assert_raises(TypeError, cheb.chebfit, [[1]], [1], 0)
|
||||
assert_raises(TypeError, cheb.chebfit, [], [1], 0)
|
||||
assert_raises(TypeError, cheb.chebfit, [1], [[[1]]], 0)
|
||||
assert_raises(TypeError, cheb.chebfit, [1, 2], [1], 0)
|
||||
assert_raises(TypeError, cheb.chebfit, [1], [1, 2], 0)
|
||||
assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[[1]])
|
||||
assert_raises(TypeError, cheb.chebfit, [1], [1], 0, w=[1, 1])
|
||||
assert_raises(ValueError, cheb.chebfit, [1], [1], [-1,])
|
||||
assert_raises(ValueError, cheb.chebfit, [1], [1], [2, -1, 6])
|
||||
assert_raises(TypeError, cheb.chebfit, [1], [1], [])
|
||||
|
||||
# Test fit
|
||||
x = np.linspace(0, 2)
|
||||
y = f(x)
|
||||
#
|
||||
coef3 = cheb.chebfit(x, y, 3)
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(cheb.chebval(x, coef3), y)
|
||||
coef3 = cheb.chebfit(x, y, [0, 1, 2, 3])
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(cheb.chebval(x, coef3), y)
|
||||
#
|
||||
coef4 = cheb.chebfit(x, y, 4)
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(cheb.chebval(x, coef4), y)
|
||||
coef4 = cheb.chebfit(x, y, [0, 1, 2, 3, 4])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(cheb.chebval(x, coef4), y)
|
||||
# check things still work if deg is not in strict increasing
|
||||
coef4 = cheb.chebfit(x, y, [2, 3, 4, 1, 0])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(cheb.chebval(x, coef4), y)
|
||||
#
|
||||
coef2d = cheb.chebfit(x, np.array([y, y]).T, 3)
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
coef2d = cheb.chebfit(x, np.array([y, y]).T, [0, 1, 2, 3])
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
# test weighting
|
||||
w = np.zeros_like(x)
|
||||
yw = y.copy()
|
||||
w[1::2] = 1
|
||||
y[0::2] = 0
|
||||
wcoef3 = cheb.chebfit(x, yw, 3, w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
wcoef3 = cheb.chebfit(x, yw, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
#
|
||||
wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, 3, w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
wcoef2d = cheb.chebfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
# test scaling with complex values x points whose square
|
||||
# is zero when summed.
|
||||
x = [1, 1j, -1, -1j]
|
||||
assert_almost_equal(cheb.chebfit(x, x, 1), [0, 1])
|
||||
assert_almost_equal(cheb.chebfit(x, x, [0, 1]), [0, 1])
|
||||
# test fitting only even polynomials
|
||||
x = np.linspace(-1, 1)
|
||||
y = f2(x)
|
||||
coef1 = cheb.chebfit(x, y, 4)
|
||||
assert_almost_equal(cheb.chebval(x, coef1), y)
|
||||
coef2 = cheb.chebfit(x, y, [0, 2, 4])
|
||||
assert_almost_equal(cheb.chebval(x, coef2), y)
|
||||
assert_almost_equal(coef1, coef2)
|
||||
|
||||
|
||||
class TestInterpolate(object):
|
||||
|
||||
def f(self, x):
|
||||
return x * (x - 1) * (x - 2)
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, cheb.chebinterpolate, self.f, -1)
|
||||
assert_raises(TypeError, cheb.chebinterpolate, self.f, 10.)
|
||||
|
||||
def test_dimensions(self):
|
||||
for deg in range(1, 5):
|
||||
assert_(cheb.chebinterpolate(self.f, deg).shape == (deg + 1,))
|
||||
|
||||
def test_approximation(self):
|
||||
|
||||
def powx(x, p):
|
||||
return x**p
|
||||
|
||||
x = np.linspace(-1, 1, 10)
|
||||
for deg in range(0, 10):
|
||||
for p in range(0, deg + 1):
|
||||
c = cheb.chebinterpolate(powx, deg, (p,))
|
||||
assert_almost_equal(cheb.chebval(x, c), powx(x, p), decimal=12)
|
||||
|
||||
|
||||
class TestCompanion(object):
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, cheb.chebcompanion, [])
|
||||
assert_raises(ValueError, cheb.chebcompanion, [1])
|
||||
|
||||
def test_dimensions(self):
|
||||
for i in range(1, 5):
|
||||
coef = [0]*i + [1]
|
||||
assert_(cheb.chebcompanion(coef).shape == (i, i))
|
||||
|
||||
def test_linear_root(self):
|
||||
assert_(cheb.chebcompanion([1, 2])[0, 0] == -.5)
|
||||
|
||||
|
||||
class TestGauss(object):
|
||||
|
||||
def test_100(self):
|
||||
x, w = cheb.chebgauss(100)
|
||||
|
||||
# test orthogonality. Note that the results need to be normalized,
|
||||
# otherwise the huge values that can arise from fast growing
|
||||
# functions like Laguerre can be very confusing.
|
||||
v = cheb.chebvander(x, 99)
|
||||
vv = np.dot(v.T * w, v)
|
||||
vd = 1/np.sqrt(vv.diagonal())
|
||||
vv = vd[:, None] * vv * vd
|
||||
assert_almost_equal(vv, np.eye(100))
|
||||
|
||||
# check that the integral of 1 is correct
|
||||
tgt = np.pi
|
||||
assert_almost_equal(w.sum(), tgt)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_chebfromroots(self):
|
||||
res = cheb.chebfromroots([])
|
||||
assert_almost_equal(trim(res), [1])
|
||||
for i in range(1, 5):
|
||||
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
|
||||
tgt = [0]*i + [1]
|
||||
res = cheb.chebfromroots(roots)*2**(i-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_chebroots(self):
|
||||
assert_almost_equal(cheb.chebroots([1]), [])
|
||||
assert_almost_equal(cheb.chebroots([1, 2]), [-.5])
|
||||
for i in range(2, 5):
|
||||
tgt = np.linspace(-1, 1, i)
|
||||
res = cheb.chebroots(cheb.chebfromroots(tgt))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_chebtrim(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, cheb.chebtrim, coef, -1)
|
||||
|
||||
# Test results
|
||||
assert_equal(cheb.chebtrim(coef), coef[:-1])
|
||||
assert_equal(cheb.chebtrim(coef, 1), coef[:-3])
|
||||
assert_equal(cheb.chebtrim(coef, 2), [0])
|
||||
|
||||
def test_chebline(self):
|
||||
assert_equal(cheb.chebline(3, 4), [3, 4])
|
||||
|
||||
def test_cheb2poly(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(cheb.cheb2poly([0]*i + [1]), Tlist[i])
|
||||
|
||||
def test_poly2cheb(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(cheb.poly2cheb(Tlist[i]), [0]*i + [1])
|
||||
|
||||
def test_weight(self):
|
||||
x = np.linspace(-1, 1, 11)[1:-1]
|
||||
tgt = 1./(np.sqrt(1 + x) * np.sqrt(1 - x))
|
||||
res = cheb.chebweight(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
def test_chebpts1(self):
|
||||
#test exceptions
|
||||
assert_raises(ValueError, cheb.chebpts1, 1.5)
|
||||
assert_raises(ValueError, cheb.chebpts1, 0)
|
||||
|
||||
#test points
|
||||
tgt = [0]
|
||||
assert_almost_equal(cheb.chebpts1(1), tgt)
|
||||
tgt = [-0.70710678118654746, 0.70710678118654746]
|
||||
assert_almost_equal(cheb.chebpts1(2), tgt)
|
||||
tgt = [-0.86602540378443871, 0, 0.86602540378443871]
|
||||
assert_almost_equal(cheb.chebpts1(3), tgt)
|
||||
tgt = [-0.9238795325, -0.3826834323, 0.3826834323, 0.9238795325]
|
||||
assert_almost_equal(cheb.chebpts1(4), tgt)
|
||||
|
||||
def test_chebpts2(self):
|
||||
#test exceptions
|
||||
assert_raises(ValueError, cheb.chebpts2, 1.5)
|
||||
assert_raises(ValueError, cheb.chebpts2, 1)
|
||||
|
||||
#test points
|
||||
tgt = [-1, 1]
|
||||
assert_almost_equal(cheb.chebpts2(2), tgt)
|
||||
tgt = [-1, 0, 1]
|
||||
assert_almost_equal(cheb.chebpts2(3), tgt)
|
||||
tgt = [-1, -0.5, .5, 1]
|
||||
assert_almost_equal(cheb.chebpts2(4), tgt)
|
||||
tgt = [-1.0, -0.707106781187, 0, 0.707106781187, 1.0]
|
||||
assert_almost_equal(cheb.chebpts2(5), tgt)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,612 @@
|
||||
"""Test inter-conversion of different polynomial classes.
|
||||
|
||||
This tests the convert and cast methods of all the polynomial classes.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import operator as op
|
||||
from numbers import Number
|
||||
|
||||
import numpy as np
|
||||
from numpy.polynomial import (
|
||||
Polynomial, Legendre, Chebyshev, Laguerre, Hermite, HermiteE)
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite)
|
||||
from numpy.compat import long
|
||||
|
||||
|
||||
classes = (
|
||||
Polynomial, Legendre, Chebyshev, Laguerre,
|
||||
Hermite, HermiteE)
|
||||
|
||||
|
||||
def test_class_methods():
|
||||
for Poly1 in classes:
|
||||
for Poly2 in classes:
|
||||
yield check_conversion, Poly1, Poly2
|
||||
yield check_cast, Poly1, Poly2
|
||||
for Poly in classes:
|
||||
yield check_call, Poly
|
||||
yield check_identity, Poly
|
||||
yield check_basis, Poly
|
||||
yield check_fromroots, Poly
|
||||
yield check_fit, Poly
|
||||
yield check_equal, Poly
|
||||
yield check_not_equal, Poly
|
||||
yield check_add, Poly
|
||||
yield check_sub, Poly
|
||||
yield check_mul, Poly
|
||||
yield check_floordiv, Poly
|
||||
yield check_truediv, Poly
|
||||
yield check_mod, Poly
|
||||
yield check_divmod, Poly
|
||||
yield check_pow, Poly
|
||||
yield check_integ, Poly
|
||||
yield check_deriv, Poly
|
||||
yield check_roots, Poly
|
||||
yield check_linspace, Poly
|
||||
yield check_mapparms, Poly
|
||||
yield check_degree, Poly
|
||||
yield check_copy, Poly
|
||||
yield check_cutdeg, Poly
|
||||
yield check_truncate, Poly
|
||||
yield check_trim, Poly
|
||||
yield check_ufunc_override, Poly
|
||||
|
||||
|
||||
#
|
||||
# helper functions
|
||||
#
|
||||
random = np.random.random
|
||||
|
||||
|
||||
def assert_poly_almost_equal(p1, p2, msg=""):
|
||||
try:
|
||||
assert_(np.all(p1.domain == p2.domain))
|
||||
assert_(np.all(p1.window == p2.window))
|
||||
assert_almost_equal(p1.coef, p2.coef)
|
||||
except AssertionError:
|
||||
msg = "Result: %s\nTarget: %s", (p1, p2)
|
||||
raise AssertionError(msg)
|
||||
|
||||
|
||||
#
|
||||
# conversion methods that depend on two classes
|
||||
#
|
||||
|
||||
|
||||
def check_conversion(Poly1, Poly2):
|
||||
x = np.linspace(0, 1, 10)
|
||||
coef = random((3,))
|
||||
|
||||
d1 = Poly1.domain + random((2,))*.25
|
||||
w1 = Poly1.window + random((2,))*.25
|
||||
p1 = Poly1(coef, domain=d1, window=w1)
|
||||
|
||||
d2 = Poly2.domain + random((2,))*.25
|
||||
w2 = Poly2.window + random((2,))*.25
|
||||
p2 = p1.convert(kind=Poly2, domain=d2, window=w2)
|
||||
|
||||
assert_almost_equal(p2.domain, d2)
|
||||
assert_almost_equal(p2.window, w2)
|
||||
assert_almost_equal(p2(x), p1(x))
|
||||
|
||||
|
||||
def check_cast(Poly1, Poly2):
|
||||
x = np.linspace(0, 1, 10)
|
||||
coef = random((3,))
|
||||
|
||||
d1 = Poly1.domain + random((2,))*.25
|
||||
w1 = Poly1.window + random((2,))*.25
|
||||
p1 = Poly1(coef, domain=d1, window=w1)
|
||||
|
||||
d2 = Poly2.domain + random((2,))*.25
|
||||
w2 = Poly2.window + random((2,))*.25
|
||||
p2 = Poly2.cast(p1, domain=d2, window=w2)
|
||||
|
||||
assert_almost_equal(p2.domain, d2)
|
||||
assert_almost_equal(p2.window, w2)
|
||||
assert_almost_equal(p2(x), p1(x))
|
||||
|
||||
|
||||
#
|
||||
# methods that depend on one class
|
||||
#
|
||||
|
||||
|
||||
def check_identity(Poly):
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
x = np.linspace(d[0], d[1], 11)
|
||||
p = Poly.identity(domain=d, window=w)
|
||||
assert_equal(p.domain, d)
|
||||
assert_equal(p.window, w)
|
||||
assert_almost_equal(p(x), x)
|
||||
|
||||
|
||||
def check_basis(Poly):
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
p = Poly.basis(5, domain=d, window=w)
|
||||
assert_equal(p.domain, d)
|
||||
assert_equal(p.window, w)
|
||||
assert_equal(p.coef, [0]*5 + [1])
|
||||
|
||||
|
||||
def check_fromroots(Poly):
|
||||
# check that requested roots are zeros of a polynomial
|
||||
# of correct degree, domain, and window.
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
r = random((5,))
|
||||
p1 = Poly.fromroots(r, domain=d, window=w)
|
||||
assert_equal(p1.degree(), len(r))
|
||||
assert_equal(p1.domain, d)
|
||||
assert_equal(p1.window, w)
|
||||
assert_almost_equal(p1(r), 0)
|
||||
|
||||
# check that polynomial is monic
|
||||
pdom = Polynomial.domain
|
||||
pwin = Polynomial.window
|
||||
p2 = Polynomial.cast(p1, domain=pdom, window=pwin)
|
||||
assert_almost_equal(p2.coef[-1], 1)
|
||||
|
||||
|
||||
def check_fit(Poly):
|
||||
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
x = np.linspace(0, 3)
|
||||
y = f(x)
|
||||
|
||||
# check default value of domain and window
|
||||
p = Poly.fit(x, y, 3)
|
||||
assert_almost_equal(p.domain, [0, 3])
|
||||
assert_almost_equal(p(x), y)
|
||||
assert_equal(p.degree(), 3)
|
||||
|
||||
# check with given domains and window
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
p = Poly.fit(x, y, 3, domain=d, window=w)
|
||||
assert_almost_equal(p(x), y)
|
||||
assert_almost_equal(p.domain, d)
|
||||
assert_almost_equal(p.window, w)
|
||||
p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w)
|
||||
assert_almost_equal(p(x), y)
|
||||
assert_almost_equal(p.domain, d)
|
||||
assert_almost_equal(p.window, w)
|
||||
|
||||
# check with class domain default
|
||||
p = Poly.fit(x, y, 3, [])
|
||||
assert_equal(p.domain, Poly.domain)
|
||||
assert_equal(p.window, Poly.window)
|
||||
p = Poly.fit(x, y, [0, 1, 2, 3], [])
|
||||
assert_equal(p.domain, Poly.domain)
|
||||
assert_equal(p.window, Poly.window)
|
||||
|
||||
# check that fit accepts weights.
|
||||
w = np.zeros_like(x)
|
||||
z = y + random(y.shape)*.25
|
||||
w[::2] = 1
|
||||
p1 = Poly.fit(x[::2], z[::2], 3)
|
||||
p2 = Poly.fit(x, z, 3, w=w)
|
||||
p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(p1(x), p2(x))
|
||||
assert_almost_equal(p2(x), p3(x))
|
||||
|
||||
|
||||
def check_equal(Poly):
|
||||
p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
|
||||
p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
|
||||
p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
|
||||
p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
|
||||
assert_(p1 == p1)
|
||||
assert_(not p1 == p2)
|
||||
assert_(not p1 == p3)
|
||||
assert_(not p1 == p4)
|
||||
|
||||
|
||||
def check_not_equal(Poly):
|
||||
p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
|
||||
p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
|
||||
p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
|
||||
p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
|
||||
assert_(not p1 != p1)
|
||||
assert_(p1 != p2)
|
||||
assert_(p1 != p3)
|
||||
assert_(p1 != p4)
|
||||
|
||||
|
||||
def check_add(Poly):
|
||||
# This checks commutation, not numerical correctness
|
||||
c1 = list(random((4,)) + .5)
|
||||
c2 = list(random((3,)) + .5)
|
||||
p1 = Poly(c1)
|
||||
p2 = Poly(c2)
|
||||
p3 = p1 + p2
|
||||
assert_poly_almost_equal(p2 + p1, p3)
|
||||
assert_poly_almost_equal(p1 + c2, p3)
|
||||
assert_poly_almost_equal(c2 + p1, p3)
|
||||
assert_poly_almost_equal(p1 + tuple(c2), p3)
|
||||
assert_poly_almost_equal(tuple(c2) + p1, p3)
|
||||
assert_poly_almost_equal(p1 + np.array(c2), p3)
|
||||
assert_poly_almost_equal(np.array(c2) + p1, p3)
|
||||
assert_raises(TypeError, op.add, p1, Poly([0], domain=Poly.domain + 1))
|
||||
assert_raises(TypeError, op.add, p1, Poly([0], window=Poly.window + 1))
|
||||
if Poly is Polynomial:
|
||||
assert_raises(TypeError, op.add, p1, Chebyshev([0]))
|
||||
else:
|
||||
assert_raises(TypeError, op.add, p1, Polynomial([0]))
|
||||
|
||||
|
||||
def check_sub(Poly):
|
||||
# This checks commutation, not numerical correctness
|
||||
c1 = list(random((4,)) + .5)
|
||||
c2 = list(random((3,)) + .5)
|
||||
p1 = Poly(c1)
|
||||
p2 = Poly(c2)
|
||||
p3 = p1 - p2
|
||||
assert_poly_almost_equal(p2 - p1, -p3)
|
||||
assert_poly_almost_equal(p1 - c2, p3)
|
||||
assert_poly_almost_equal(c2 - p1, -p3)
|
||||
assert_poly_almost_equal(p1 - tuple(c2), p3)
|
||||
assert_poly_almost_equal(tuple(c2) - p1, -p3)
|
||||
assert_poly_almost_equal(p1 - np.array(c2), p3)
|
||||
assert_poly_almost_equal(np.array(c2) - p1, -p3)
|
||||
assert_raises(TypeError, op.sub, p1, Poly([0], domain=Poly.domain + 1))
|
||||
assert_raises(TypeError, op.sub, p1, Poly([0], window=Poly.window + 1))
|
||||
if Poly is Polynomial:
|
||||
assert_raises(TypeError, op.sub, p1, Chebyshev([0]))
|
||||
else:
|
||||
assert_raises(TypeError, op.sub, p1, Polynomial([0]))
|
||||
|
||||
|
||||
def check_mul(Poly):
|
||||
c1 = list(random((4,)) + .5)
|
||||
c2 = list(random((3,)) + .5)
|
||||
p1 = Poly(c1)
|
||||
p2 = Poly(c2)
|
||||
p3 = p1 * p2
|
||||
assert_poly_almost_equal(p2 * p1, p3)
|
||||
assert_poly_almost_equal(p1 * c2, p3)
|
||||
assert_poly_almost_equal(c2 * p1, p3)
|
||||
assert_poly_almost_equal(p1 * tuple(c2), p3)
|
||||
assert_poly_almost_equal(tuple(c2) * p1, p3)
|
||||
assert_poly_almost_equal(p1 * np.array(c2), p3)
|
||||
assert_poly_almost_equal(np.array(c2) * p1, p3)
|
||||
assert_poly_almost_equal(p1 * 2, p1 * Poly([2]))
|
||||
assert_poly_almost_equal(2 * p1, p1 * Poly([2]))
|
||||
assert_raises(TypeError, op.mul, p1, Poly([0], domain=Poly.domain + 1))
|
||||
assert_raises(TypeError, op.mul, p1, Poly([0], window=Poly.window + 1))
|
||||
if Poly is Polynomial:
|
||||
assert_raises(TypeError, op.mul, p1, Chebyshev([0]))
|
||||
else:
|
||||
assert_raises(TypeError, op.mul, p1, Polynomial([0]))
|
||||
|
||||
|
||||
def check_floordiv(Poly):
|
||||
c1 = list(random((4,)) + .5)
|
||||
c2 = list(random((3,)) + .5)
|
||||
c3 = list(random((2,)) + .5)
|
||||
p1 = Poly(c1)
|
||||
p2 = Poly(c2)
|
||||
p3 = Poly(c3)
|
||||
p4 = p1 * p2 + p3
|
||||
c4 = list(p4.coef)
|
||||
assert_poly_almost_equal(p4 // p2, p1)
|
||||
assert_poly_almost_equal(p4 // c2, p1)
|
||||
assert_poly_almost_equal(c4 // p2, p1)
|
||||
assert_poly_almost_equal(p4 // tuple(c2), p1)
|
||||
assert_poly_almost_equal(tuple(c4) // p2, p1)
|
||||
assert_poly_almost_equal(p4 // np.array(c2), p1)
|
||||
assert_poly_almost_equal(np.array(c4) // p2, p1)
|
||||
assert_poly_almost_equal(2 // p2, Poly([0]))
|
||||
assert_poly_almost_equal(p2 // 2, 0.5*p2)
|
||||
assert_raises(
|
||||
TypeError, op.floordiv, p1, Poly([0], domain=Poly.domain + 1))
|
||||
assert_raises(
|
||||
TypeError, op.floordiv, p1, Poly([0], window=Poly.window + 1))
|
||||
if Poly is Polynomial:
|
||||
assert_raises(TypeError, op.floordiv, p1, Chebyshev([0]))
|
||||
else:
|
||||
assert_raises(TypeError, op.floordiv, p1, Polynomial([0]))
|
||||
|
||||
|
||||
def check_truediv(Poly):
|
||||
# true division is valid only if the denominator is a Number and
|
||||
# not a python bool.
|
||||
p1 = Poly([1,2,3])
|
||||
p2 = p1 * 5
|
||||
|
||||
for stype in np.ScalarType:
|
||||
if not issubclass(stype, Number) or issubclass(stype, bool):
|
||||
continue
|
||||
s = stype(5)
|
||||
assert_poly_almost_equal(op.truediv(p2, s), p1)
|
||||
assert_raises(TypeError, op.truediv, s, p2)
|
||||
for stype in (int, long, float):
|
||||
s = stype(5)
|
||||
assert_poly_almost_equal(op.truediv(p2, s), p1)
|
||||
assert_raises(TypeError, op.truediv, s, p2)
|
||||
for stype in [complex]:
|
||||
s = stype(5, 0)
|
||||
assert_poly_almost_equal(op.truediv(p2, s), p1)
|
||||
assert_raises(TypeError, op.truediv, s, p2)
|
||||
for s in [tuple(), list(), dict(), bool(), np.array([1])]:
|
||||
assert_raises(TypeError, op.truediv, p2, s)
|
||||
assert_raises(TypeError, op.truediv, s, p2)
|
||||
for ptype in classes:
|
||||
assert_raises(TypeError, op.truediv, p2, ptype(1))
|
||||
|
||||
|
||||
def check_mod(Poly):
|
||||
# This checks commutation, not numerical correctness
|
||||
c1 = list(random((4,)) + .5)
|
||||
c2 = list(random((3,)) + .5)
|
||||
c3 = list(random((2,)) + .5)
|
||||
p1 = Poly(c1)
|
||||
p2 = Poly(c2)
|
||||
p3 = Poly(c3)
|
||||
p4 = p1 * p2 + p3
|
||||
c4 = list(p4.coef)
|
||||
assert_poly_almost_equal(p4 % p2, p3)
|
||||
assert_poly_almost_equal(p4 % c2, p3)
|
||||
assert_poly_almost_equal(c4 % p2, p3)
|
||||
assert_poly_almost_equal(p4 % tuple(c2), p3)
|
||||
assert_poly_almost_equal(tuple(c4) % p2, p3)
|
||||
assert_poly_almost_equal(p4 % np.array(c2), p3)
|
||||
assert_poly_almost_equal(np.array(c4) % p2, p3)
|
||||
assert_poly_almost_equal(2 % p2, Poly([2]))
|
||||
assert_poly_almost_equal(p2 % 2, Poly([0]))
|
||||
assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
|
||||
assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
|
||||
if Poly is Polynomial:
|
||||
assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
|
||||
else:
|
||||
assert_raises(TypeError, op.mod, p1, Polynomial([0]))
|
||||
|
||||
|
||||
def check_divmod(Poly):
|
||||
# This checks commutation, not numerical correctness
|
||||
c1 = list(random((4,)) + .5)
|
||||
c2 = list(random((3,)) + .5)
|
||||
c3 = list(random((2,)) + .5)
|
||||
p1 = Poly(c1)
|
||||
p2 = Poly(c2)
|
||||
p3 = Poly(c3)
|
||||
p4 = p1 * p2 + p3
|
||||
c4 = list(p4.coef)
|
||||
quo, rem = divmod(p4, p2)
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(p4, c2)
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(c4, p2)
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(p4, tuple(c2))
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(tuple(c4), p2)
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(p4, np.array(c2))
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(np.array(c4), p2)
|
||||
assert_poly_almost_equal(quo, p1)
|
||||
assert_poly_almost_equal(rem, p3)
|
||||
quo, rem = divmod(p2, 2)
|
||||
assert_poly_almost_equal(quo, 0.5*p2)
|
||||
assert_poly_almost_equal(rem, Poly([0]))
|
||||
quo, rem = divmod(2, p2)
|
||||
assert_poly_almost_equal(quo, Poly([0]))
|
||||
assert_poly_almost_equal(rem, Poly([2]))
|
||||
assert_raises(TypeError, divmod, p1, Poly([0], domain=Poly.domain + 1))
|
||||
assert_raises(TypeError, divmod, p1, Poly([0], window=Poly.window + 1))
|
||||
if Poly is Polynomial:
|
||||
assert_raises(TypeError, divmod, p1, Chebyshev([0]))
|
||||
else:
|
||||
assert_raises(TypeError, divmod, p1, Polynomial([0]))
|
||||
|
||||
|
||||
def check_roots(Poly):
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
tgt = np.sort(random((5,)))
|
||||
res = np.sort(Poly.fromroots(tgt, domain=d, window=w).roots())
|
||||
assert_almost_equal(res, tgt)
|
||||
# default domain and window
|
||||
res = np.sort(Poly.fromroots(tgt).roots())
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
def check_degree(Poly):
|
||||
p = Poly.basis(5)
|
||||
assert_equal(p.degree(), 5)
|
||||
|
||||
|
||||
def check_copy(Poly):
|
||||
p1 = Poly.basis(5)
|
||||
p2 = p1.copy()
|
||||
assert_(p1 == p2)
|
||||
assert_(p1 is not p2)
|
||||
assert_(p1.coef is not p2.coef)
|
||||
assert_(p1.domain is not p2.domain)
|
||||
assert_(p1.window is not p2.window)
|
||||
|
||||
|
||||
def check_integ(Poly):
|
||||
P = Polynomial
|
||||
# Check defaults
|
||||
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
|
||||
p1 = P.cast(p0.integ())
|
||||
p2 = P.cast(p0.integ(2))
|
||||
assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
|
||||
assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
|
||||
# Check with k
|
||||
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
|
||||
p1 = P.cast(p0.integ(k=1))
|
||||
p2 = P.cast(p0.integ(2, k=[1, 1]))
|
||||
assert_poly_almost_equal(p1, P([1, 2, 3, 4]))
|
||||
assert_poly_almost_equal(p2, P([1, 1, 1, 1, 1]))
|
||||
# Check with lbnd
|
||||
p0 = Poly.cast(P([1*2, 2*3, 3*4]))
|
||||
p1 = P.cast(p0.integ(lbnd=1))
|
||||
p2 = P.cast(p0.integ(2, lbnd=1))
|
||||
assert_poly_almost_equal(p1, P([-9, 2, 3, 4]))
|
||||
assert_poly_almost_equal(p2, P([6, -9, 1, 1, 1]))
|
||||
# Check scaling
|
||||
d = 2*Poly.domain
|
||||
p0 = Poly.cast(P([1*2, 2*3, 3*4]), domain=d)
|
||||
p1 = P.cast(p0.integ())
|
||||
p2 = P.cast(p0.integ(2))
|
||||
assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
|
||||
assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
|
||||
|
||||
|
||||
def check_deriv(Poly):
|
||||
# Check that the derivative is the inverse of integration. It is
|
||||
# assumes that the integration has been checked elsewhere.
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
p1 = Poly([1, 2, 3], domain=d, window=w)
|
||||
p2 = p1.integ(2, k=[1, 2])
|
||||
p3 = p1.integ(1, k=[1])
|
||||
assert_almost_equal(p2.deriv(1).coef, p3.coef)
|
||||
assert_almost_equal(p2.deriv(2).coef, p1.coef)
|
||||
# default domain and window
|
||||
p1 = Poly([1, 2, 3])
|
||||
p2 = p1.integ(2, k=[1, 2])
|
||||
p3 = p1.integ(1, k=[1])
|
||||
assert_almost_equal(p2.deriv(1).coef, p3.coef)
|
||||
assert_almost_equal(p2.deriv(2).coef, p1.coef)
|
||||
|
||||
|
||||
def check_linspace(Poly):
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
p = Poly([1, 2, 3], domain=d, window=w)
|
||||
# check default domain
|
||||
xtgt = np.linspace(d[0], d[1], 20)
|
||||
ytgt = p(xtgt)
|
||||
xres, yres = p.linspace(20)
|
||||
assert_almost_equal(xres, xtgt)
|
||||
assert_almost_equal(yres, ytgt)
|
||||
# check specified domain
|
||||
xtgt = np.linspace(0, 2, 20)
|
||||
ytgt = p(xtgt)
|
||||
xres, yres = p.linspace(20, domain=[0, 2])
|
||||
assert_almost_equal(xres, xtgt)
|
||||
assert_almost_equal(yres, ytgt)
|
||||
|
||||
|
||||
def check_pow(Poly):
|
||||
d = Poly.domain + random((2,))*.25
|
||||
w = Poly.window + random((2,))*.25
|
||||
tgt = Poly([1], domain=d, window=w)
|
||||
tst = Poly([1, 2, 3], domain=d, window=w)
|
||||
for i in range(5):
|
||||
assert_poly_almost_equal(tst**i, tgt)
|
||||
tgt = tgt * tst
|
||||
# default domain and window
|
||||
tgt = Poly([1])
|
||||
tst = Poly([1, 2, 3])
|
||||
for i in range(5):
|
||||
assert_poly_almost_equal(tst**i, tgt)
|
||||
tgt = tgt * tst
|
||||
# check error for invalid powers
|
||||
assert_raises(ValueError, op.pow, tgt, 1.5)
|
||||
assert_raises(ValueError, op.pow, tgt, -1)
|
||||
|
||||
|
||||
def check_call(Poly):
|
||||
P = Polynomial
|
||||
d = Poly.domain
|
||||
x = np.linspace(d[0], d[1], 11)
|
||||
|
||||
# Check defaults
|
||||
p = Poly.cast(P([1, 2, 3]))
|
||||
tgt = 1 + x*(2 + 3*x)
|
||||
res = p(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
def check_cutdeg(Poly):
|
||||
p = Poly([1, 2, 3])
|
||||
assert_raises(ValueError, p.cutdeg, .5)
|
||||
assert_raises(ValueError, p.cutdeg, -1)
|
||||
assert_equal(len(p.cutdeg(3)), 3)
|
||||
assert_equal(len(p.cutdeg(2)), 3)
|
||||
assert_equal(len(p.cutdeg(1)), 2)
|
||||
assert_equal(len(p.cutdeg(0)), 1)
|
||||
|
||||
|
||||
def check_truncate(Poly):
|
||||
p = Poly([1, 2, 3])
|
||||
assert_raises(ValueError, p.truncate, .5)
|
||||
assert_raises(ValueError, p.truncate, 0)
|
||||
assert_equal(len(p.truncate(4)), 3)
|
||||
assert_equal(len(p.truncate(3)), 3)
|
||||
assert_equal(len(p.truncate(2)), 2)
|
||||
assert_equal(len(p.truncate(1)), 1)
|
||||
|
||||
|
||||
def check_trim(Poly):
|
||||
c = [1, 1e-6, 1e-12, 0]
|
||||
p = Poly(c)
|
||||
assert_equal(p.trim().coef, c[:3])
|
||||
assert_equal(p.trim(1e-10).coef, c[:2])
|
||||
assert_equal(p.trim(1e-5).coef, c[:1])
|
||||
|
||||
|
||||
def check_mapparms(Poly):
|
||||
# check with defaults. Should be identity.
|
||||
d = Poly.domain
|
||||
w = Poly.window
|
||||
p = Poly([1], domain=d, window=w)
|
||||
assert_almost_equal([0, 1], p.mapparms())
|
||||
#
|
||||
w = 2*d + 1
|
||||
p = Poly([1], domain=d, window=w)
|
||||
assert_almost_equal([1, 2], p.mapparms())
|
||||
|
||||
|
||||
def check_ufunc_override(Poly):
|
||||
p = Poly([1, 2, 3])
|
||||
x = np.ones(3)
|
||||
assert_raises(TypeError, np.add, p, x)
|
||||
assert_raises(TypeError, np.add, x, p)
|
||||
|
||||
|
||||
class TestInterpolate(object):
|
||||
|
||||
def f(self, x):
|
||||
return x * (x - 1) * (x - 2)
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, Chebyshev.interpolate, self.f, -1)
|
||||
assert_raises(TypeError, Chebyshev.interpolate, self.f, 10.)
|
||||
|
||||
def test_dimensions(self):
|
||||
for deg in range(1, 5):
|
||||
assert_(Chebyshev.interpolate(self.f, deg).degree() == deg)
|
||||
|
||||
def test_approximation(self):
|
||||
|
||||
def powx(x, p):
|
||||
return x**p
|
||||
|
||||
x = np.linspace(0, 2, 10)
|
||||
for deg in range(0, 10):
|
||||
for t in range(0, deg + 1):
|
||||
p = Chebyshev.interpolate(powx, deg, domain=[0, 2], args=(t,))
|
||||
assert_almost_equal(p(x), powx(x, t), decimal=12)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,551 @@
|
||||
"""Tests for hermite module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.hermite as herm
|
||||
from numpy.polynomial.polynomial import polyval
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
H0 = np.array([1])
|
||||
H1 = np.array([0, 2])
|
||||
H2 = np.array([-2, 0, 4])
|
||||
H3 = np.array([0, -12, 0, 8])
|
||||
H4 = np.array([12, 0, -48, 0, 16])
|
||||
H5 = np.array([0, 120, 0, -160, 0, 32])
|
||||
H6 = np.array([-120, 0, 720, 0, -480, 0, 64])
|
||||
H7 = np.array([0, -1680, 0, 3360, 0, -1344, 0, 128])
|
||||
H8 = np.array([1680, 0, -13440, 0, 13440, 0, -3584, 0, 256])
|
||||
H9 = np.array([0, 30240, 0, -80640, 0, 48384, 0, -9216, 0, 512])
|
||||
|
||||
Hlist = [H0, H1, H2, H3, H4, H5, H6, H7, H8, H9]
|
||||
|
||||
|
||||
def trim(x):
|
||||
return herm.hermtrim(x, tol=1e-6)
|
||||
|
||||
|
||||
class TestConstants(object):
|
||||
|
||||
def test_hermdomain(self):
|
||||
assert_equal(herm.hermdomain, [-1, 1])
|
||||
|
||||
def test_hermzero(self):
|
||||
assert_equal(herm.hermzero, [0])
|
||||
|
||||
def test_hermone(self):
|
||||
assert_equal(herm.hermone, [1])
|
||||
|
||||
def test_hermx(self):
|
||||
assert_equal(herm.hermx, [0, .5])
|
||||
|
||||
|
||||
class TestArithmetic(object):
|
||||
x = np.linspace(-3, 3, 100)
|
||||
|
||||
def test_hermadd(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] += 1
|
||||
res = herm.hermadd([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_hermsub(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] -= 1
|
||||
res = herm.hermsub([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_hermmulx(self):
|
||||
assert_equal(herm.hermmulx([0]), [0])
|
||||
assert_equal(herm.hermmulx([1]), [0, .5])
|
||||
for i in range(1, 5):
|
||||
ser = [0]*i + [1]
|
||||
tgt = [0]*(i - 1) + [i, 0, .5]
|
||||
assert_equal(herm.hermmulx(ser), tgt)
|
||||
|
||||
def test_hermmul(self):
|
||||
# check values of result
|
||||
for i in range(5):
|
||||
pol1 = [0]*i + [1]
|
||||
val1 = herm.hermval(self.x, pol1)
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
pol2 = [0]*j + [1]
|
||||
val2 = herm.hermval(self.x, pol2)
|
||||
pol3 = herm.hermmul(pol1, pol2)
|
||||
val3 = herm.hermval(self.x, pol3)
|
||||
assert_(len(pol3) == i + j + 1, msg)
|
||||
assert_almost_equal(val3, val1*val2, err_msg=msg)
|
||||
|
||||
def test_hermdiv(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
ci = [0]*i + [1]
|
||||
cj = [0]*j + [1]
|
||||
tgt = herm.hermadd(ci, cj)
|
||||
quo, rem = herm.hermdiv(tgt, ci)
|
||||
res = herm.hermadd(herm.hermmul(quo, ci), rem)
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
|
||||
class TestEvaluation(object):
|
||||
# coefficients of 1 + 2*x + 3*x**2
|
||||
c1d = np.array([2.5, 1., .75])
|
||||
c2d = np.einsum('i,j->ij', c1d, c1d)
|
||||
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
|
||||
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
y = polyval(x, [1., 2., 3.])
|
||||
|
||||
def test_hermval(self):
|
||||
#check empty input
|
||||
assert_equal(herm.hermval([], [1]).size, 0)
|
||||
|
||||
#check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [polyval(x, c) for c in Hlist]
|
||||
for i in range(10):
|
||||
msg = "At i=%d" % i
|
||||
tgt = y[i]
|
||||
res = herm.hermval(x, [0]*i + [1])
|
||||
assert_almost_equal(res, tgt, err_msg=msg)
|
||||
|
||||
#check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(herm.hermval(x, [1]).shape, dims)
|
||||
assert_equal(herm.hermval(x, [1, 0]).shape, dims)
|
||||
assert_equal(herm.hermval(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
def test_hermval2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, herm.hermval2d, x1, x2[:2], self.c2d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2
|
||||
res = herm.hermval2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herm.hermval2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_hermval3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, herm.hermval3d, x1, x2, x3[:2], self.c3d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2*y3
|
||||
res = herm.hermval3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herm.hermval3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_hermgrid2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j->ij', y1, y2)
|
||||
res = herm.hermgrid2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herm.hermgrid2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3)*2)
|
||||
|
||||
def test_hermgrid3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
|
||||
res = herm.hermgrid3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herm.hermgrid3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3)*3)
|
||||
|
||||
|
||||
class TestIntegral(object):
|
||||
|
||||
def test_hermint(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, herm.hermint, [0], .5)
|
||||
assert_raises(ValueError, herm.hermint, [0], -1)
|
||||
assert_raises(ValueError, herm.hermint, [0], 1, [0, 0])
|
||||
assert_raises(ValueError, herm.hermint, [0], lbnd=[0])
|
||||
assert_raises(ValueError, herm.hermint, [0], scl=[0])
|
||||
assert_raises(ValueError, herm.hermint, [0], axis=.5)
|
||||
|
||||
# test integration of zero polynomial
|
||||
for i in range(2, 5):
|
||||
k = [0]*(i - 2) + [1]
|
||||
res = herm.hermint([0], m=i, k=k)
|
||||
assert_almost_equal(res, [0, .5])
|
||||
|
||||
# check single integration with integration constant
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [1/scl]
|
||||
hermpol = herm.poly2herm(pol)
|
||||
hermint = herm.hermint(hermpol, m=1, k=[i])
|
||||
res = herm.herm2poly(hermint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check single integration with integration constant and lbnd
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
hermpol = herm.poly2herm(pol)
|
||||
hermint = herm.hermint(hermpol, m=1, k=[i], lbnd=-1)
|
||||
assert_almost_equal(herm.hermval(-1, hermint), i)
|
||||
|
||||
# check single integration with integration constant and scaling
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [2/scl]
|
||||
hermpol = herm.poly2herm(pol)
|
||||
hermint = herm.hermint(hermpol, m=1, k=[i], scl=2)
|
||||
res = herm.herm2poly(hermint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with default k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herm.hermint(tgt, m=1)
|
||||
res = herm.hermint(pol, m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with defined k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herm.hermint(tgt, m=1, k=[k])
|
||||
res = herm.hermint(pol, m=j, k=list(range(j)))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with lbnd
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herm.hermint(tgt, m=1, k=[k], lbnd=-1)
|
||||
res = herm.hermint(pol, m=j, k=list(range(j)), lbnd=-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herm.hermint(tgt, m=1, k=[k], scl=2)
|
||||
res = herm.hermint(pol, m=j, k=list(range(j)), scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_hermint_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([herm.hermint(c) for c in c2d.T]).T
|
||||
res = herm.hermint(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([herm.hermint(c) for c in c2d])
|
||||
res = herm.hermint(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([herm.hermint(c, k=3) for c in c2d])
|
||||
res = herm.hermint(c2d, k=3, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestDerivative(object):
|
||||
|
||||
def test_hermder(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, herm.hermder, [0], .5)
|
||||
assert_raises(ValueError, herm.hermder, [0], -1)
|
||||
|
||||
# check that zeroth derivative does nothing
|
||||
for i in range(5):
|
||||
tgt = [0]*i + [1]
|
||||
res = herm.hermder(tgt, m=0)
|
||||
assert_equal(trim(res), trim(tgt))
|
||||
|
||||
# check that derivation is the inverse of integration
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = herm.hermder(herm.hermint(tgt, m=j), m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check derivation with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = herm.hermder(herm.hermint(tgt, m=j, scl=2), m=j, scl=.5)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_hermder_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([herm.hermder(c) for c in c2d.T]).T
|
||||
res = herm.hermder(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([herm.hermder(c) for c in c2d])
|
||||
res = herm.hermder(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestVander(object):
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
|
||||
def test_hermvander(self):
|
||||
# check for 1d x
|
||||
x = np.arange(3)
|
||||
v = herm.hermvander(x, 3)
|
||||
assert_(v.shape == (3, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], herm.hermval(x, coef))
|
||||
|
||||
# check for 2d x
|
||||
x = np.array([[1, 2], [3, 4], [5, 6]])
|
||||
v = herm.hermvander(x, 3)
|
||||
assert_(v.shape == (3, 2, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], herm.hermval(x, coef))
|
||||
|
||||
def test_hermvander2d(self):
|
||||
# also tests hermval2d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3))
|
||||
van = herm.hermvander2d(x1, x2, [1, 2])
|
||||
tgt = herm.hermval2d(x1, x2, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = herm.hermvander2d([x1], [x2], [1, 2])
|
||||
assert_(van.shape == (1, 5, 6))
|
||||
|
||||
def test_hermvander3d(self):
|
||||
# also tests hermval3d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3, 4))
|
||||
van = herm.hermvander3d(x1, x2, x3, [1, 2, 3])
|
||||
tgt = herm.hermval3d(x1, x2, x3, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = herm.hermvander3d([x1], [x2], [x3], [1, 2, 3])
|
||||
assert_(van.shape == (1, 5, 24))
|
||||
|
||||
|
||||
class TestFitting(object):
|
||||
|
||||
def test_hermfit(self):
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
|
||||
def f2(x):
|
||||
return x**4 + x**2 + 1
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, herm.hermfit, [1], [1], -1)
|
||||
assert_raises(TypeError, herm.hermfit, [[1]], [1], 0)
|
||||
assert_raises(TypeError, herm.hermfit, [], [1], 0)
|
||||
assert_raises(TypeError, herm.hermfit, [1], [[[1]]], 0)
|
||||
assert_raises(TypeError, herm.hermfit, [1, 2], [1], 0)
|
||||
assert_raises(TypeError, herm.hermfit, [1], [1, 2], 0)
|
||||
assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[[1]])
|
||||
assert_raises(TypeError, herm.hermfit, [1], [1], 0, w=[1, 1])
|
||||
assert_raises(ValueError, herm.hermfit, [1], [1], [-1,])
|
||||
assert_raises(ValueError, herm.hermfit, [1], [1], [2, -1, 6])
|
||||
assert_raises(TypeError, herm.hermfit, [1], [1], [])
|
||||
|
||||
# Test fit
|
||||
x = np.linspace(0, 2)
|
||||
y = f(x)
|
||||
#
|
||||
coef3 = herm.hermfit(x, y, 3)
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(herm.hermval(x, coef3), y)
|
||||
coef3 = herm.hermfit(x, y, [0, 1, 2, 3])
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(herm.hermval(x, coef3), y)
|
||||
#
|
||||
coef4 = herm.hermfit(x, y, 4)
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(herm.hermval(x, coef4), y)
|
||||
coef4 = herm.hermfit(x, y, [0, 1, 2, 3, 4])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(herm.hermval(x, coef4), y)
|
||||
# check things still work if deg is not in strict increasing
|
||||
coef4 = herm.hermfit(x, y, [2, 3, 4, 1, 0])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(herm.hermval(x, coef4), y)
|
||||
#
|
||||
coef2d = herm.hermfit(x, np.array([y, y]).T, 3)
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
coef2d = herm.hermfit(x, np.array([y, y]).T, [0, 1, 2, 3])
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
# test weighting
|
||||
w = np.zeros_like(x)
|
||||
yw = y.copy()
|
||||
w[1::2] = 1
|
||||
y[0::2] = 0
|
||||
wcoef3 = herm.hermfit(x, yw, 3, w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
wcoef3 = herm.hermfit(x, yw, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
#
|
||||
wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, 3, w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
wcoef2d = herm.hermfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
# test scaling with complex values x points whose square
|
||||
# is zero when summed.
|
||||
x = [1, 1j, -1, -1j]
|
||||
assert_almost_equal(herm.hermfit(x, x, 1), [0, .5])
|
||||
assert_almost_equal(herm.hermfit(x, x, [0, 1]), [0, .5])
|
||||
# test fitting only even Legendre polynomials
|
||||
x = np.linspace(-1, 1)
|
||||
y = f2(x)
|
||||
coef1 = herm.hermfit(x, y, 4)
|
||||
assert_almost_equal(herm.hermval(x, coef1), y)
|
||||
coef2 = herm.hermfit(x, y, [0, 2, 4])
|
||||
assert_almost_equal(herm.hermval(x, coef2), y)
|
||||
assert_almost_equal(coef1, coef2)
|
||||
|
||||
|
||||
class TestCompanion(object):
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, herm.hermcompanion, [])
|
||||
assert_raises(ValueError, herm.hermcompanion, [1])
|
||||
|
||||
def test_dimensions(self):
|
||||
for i in range(1, 5):
|
||||
coef = [0]*i + [1]
|
||||
assert_(herm.hermcompanion(coef).shape == (i, i))
|
||||
|
||||
def test_linear_root(self):
|
||||
assert_(herm.hermcompanion([1, 2])[0, 0] == -.25)
|
||||
|
||||
|
||||
class TestGauss(object):
|
||||
|
||||
def test_100(self):
|
||||
x, w = herm.hermgauss(100)
|
||||
|
||||
# test orthogonality. Note that the results need to be normalized,
|
||||
# otherwise the huge values that can arise from fast growing
|
||||
# functions like Laguerre can be very confusing.
|
||||
v = herm.hermvander(x, 99)
|
||||
vv = np.dot(v.T * w, v)
|
||||
vd = 1/np.sqrt(vv.diagonal())
|
||||
vv = vd[:, None] * vv * vd
|
||||
assert_almost_equal(vv, np.eye(100))
|
||||
|
||||
# check that the integral of 1 is correct
|
||||
tgt = np.sqrt(np.pi)
|
||||
assert_almost_equal(w.sum(), tgt)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_hermfromroots(self):
|
||||
res = herm.hermfromroots([])
|
||||
assert_almost_equal(trim(res), [1])
|
||||
for i in range(1, 5):
|
||||
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
|
||||
pol = herm.hermfromroots(roots)
|
||||
res = herm.hermval(roots, pol)
|
||||
tgt = 0
|
||||
assert_(len(pol) == i + 1)
|
||||
assert_almost_equal(herm.herm2poly(pol)[-1], 1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
def test_hermroots(self):
|
||||
assert_almost_equal(herm.hermroots([1]), [])
|
||||
assert_almost_equal(herm.hermroots([1, 1]), [-.5])
|
||||
for i in range(2, 5):
|
||||
tgt = np.linspace(-1, 1, i)
|
||||
res = herm.hermroots(herm.hermfromroots(tgt))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_hermtrim(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, herm.hermtrim, coef, -1)
|
||||
|
||||
# Test results
|
||||
assert_equal(herm.hermtrim(coef), coef[:-1])
|
||||
assert_equal(herm.hermtrim(coef, 1), coef[:-3])
|
||||
assert_equal(herm.hermtrim(coef, 2), [0])
|
||||
|
||||
def test_hermline(self):
|
||||
assert_equal(herm.hermline(3, 4), [3, 2])
|
||||
|
||||
def test_herm2poly(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(herm.herm2poly([0]*i + [1]), Hlist[i])
|
||||
|
||||
def test_poly2herm(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(herm.poly2herm(Hlist[i]), [0]*i + [1])
|
||||
|
||||
def test_weight(self):
|
||||
x = np.linspace(-5, 5, 11)
|
||||
tgt = np.exp(-x**2)
|
||||
res = herm.hermweight(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,552 @@
|
||||
"""Tests for hermite_e module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.hermite_e as herme
|
||||
from numpy.polynomial.polynomial import polyval
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
He0 = np.array([1])
|
||||
He1 = np.array([0, 1])
|
||||
He2 = np.array([-1, 0, 1])
|
||||
He3 = np.array([0, -3, 0, 1])
|
||||
He4 = np.array([3, 0, -6, 0, 1])
|
||||
He5 = np.array([0, 15, 0, -10, 0, 1])
|
||||
He6 = np.array([-15, 0, 45, 0, -15, 0, 1])
|
||||
He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1])
|
||||
He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1])
|
||||
He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1])
|
||||
|
||||
Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9]
|
||||
|
||||
|
||||
def trim(x):
|
||||
return herme.hermetrim(x, tol=1e-6)
|
||||
|
||||
|
||||
class TestConstants(object):
|
||||
|
||||
def test_hermedomain(self):
|
||||
assert_equal(herme.hermedomain, [-1, 1])
|
||||
|
||||
def test_hermezero(self):
|
||||
assert_equal(herme.hermezero, [0])
|
||||
|
||||
def test_hermeone(self):
|
||||
assert_equal(herme.hermeone, [1])
|
||||
|
||||
def test_hermex(self):
|
||||
assert_equal(herme.hermex, [0, 1])
|
||||
|
||||
|
||||
class TestArithmetic(object):
|
||||
x = np.linspace(-3, 3, 100)
|
||||
|
||||
def test_hermeadd(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] += 1
|
||||
res = herme.hermeadd([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_hermesub(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] -= 1
|
||||
res = herme.hermesub([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_hermemulx(self):
|
||||
assert_equal(herme.hermemulx([0]), [0])
|
||||
assert_equal(herme.hermemulx([1]), [0, 1])
|
||||
for i in range(1, 5):
|
||||
ser = [0]*i + [1]
|
||||
tgt = [0]*(i - 1) + [i, 0, 1]
|
||||
assert_equal(herme.hermemulx(ser), tgt)
|
||||
|
||||
def test_hermemul(self):
|
||||
# check values of result
|
||||
for i in range(5):
|
||||
pol1 = [0]*i + [1]
|
||||
val1 = herme.hermeval(self.x, pol1)
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
pol2 = [0]*j + [1]
|
||||
val2 = herme.hermeval(self.x, pol2)
|
||||
pol3 = herme.hermemul(pol1, pol2)
|
||||
val3 = herme.hermeval(self.x, pol3)
|
||||
assert_(len(pol3) == i + j + 1, msg)
|
||||
assert_almost_equal(val3, val1*val2, err_msg=msg)
|
||||
|
||||
def test_hermediv(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
ci = [0]*i + [1]
|
||||
cj = [0]*j + [1]
|
||||
tgt = herme.hermeadd(ci, cj)
|
||||
quo, rem = herme.hermediv(tgt, ci)
|
||||
res = herme.hermeadd(herme.hermemul(quo, ci), rem)
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
|
||||
class TestEvaluation(object):
|
||||
# coefficients of 1 + 2*x + 3*x**2
|
||||
c1d = np.array([4., 2., 3.])
|
||||
c2d = np.einsum('i,j->ij', c1d, c1d)
|
||||
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
|
||||
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
y = polyval(x, [1., 2., 3.])
|
||||
|
||||
def test_hermeval(self):
|
||||
#check empty input
|
||||
assert_equal(herme.hermeval([], [1]).size, 0)
|
||||
|
||||
#check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [polyval(x, c) for c in Helist]
|
||||
for i in range(10):
|
||||
msg = "At i=%d" % i
|
||||
tgt = y[i]
|
||||
res = herme.hermeval(x, [0]*i + [1])
|
||||
assert_almost_equal(res, tgt, err_msg=msg)
|
||||
|
||||
#check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(herme.hermeval(x, [1]).shape, dims)
|
||||
assert_equal(herme.hermeval(x, [1, 0]).shape, dims)
|
||||
assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
def test_hermeval2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2
|
||||
res = herme.hermeval2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herme.hermeval2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_hermeval3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2*y3
|
||||
res = herme.hermeval3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herme.hermeval3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_hermegrid2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j->ij', y1, y2)
|
||||
res = herme.hermegrid2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herme.hermegrid2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3)*2)
|
||||
|
||||
def test_hermegrid3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
|
||||
res = herme.hermegrid3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = herme.hermegrid3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3)*3)
|
||||
|
||||
|
||||
class TestIntegral(object):
|
||||
|
||||
def test_hermeint(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, herme.hermeint, [0], .5)
|
||||
assert_raises(ValueError, herme.hermeint, [0], -1)
|
||||
assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0])
|
||||
assert_raises(ValueError, herme.hermeint, [0], lbnd=[0])
|
||||
assert_raises(ValueError, herme.hermeint, [0], scl=[0])
|
||||
assert_raises(ValueError, herme.hermeint, [0], axis=.5)
|
||||
|
||||
# test integration of zero polynomial
|
||||
for i in range(2, 5):
|
||||
k = [0]*(i - 2) + [1]
|
||||
res = herme.hermeint([0], m=i, k=k)
|
||||
assert_almost_equal(res, [0, 1])
|
||||
|
||||
# check single integration with integration constant
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [1/scl]
|
||||
hermepol = herme.poly2herme(pol)
|
||||
hermeint = herme.hermeint(hermepol, m=1, k=[i])
|
||||
res = herme.herme2poly(hermeint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check single integration with integration constant and lbnd
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
hermepol = herme.poly2herme(pol)
|
||||
hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1)
|
||||
assert_almost_equal(herme.hermeval(-1, hermeint), i)
|
||||
|
||||
# check single integration with integration constant and scaling
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [2/scl]
|
||||
hermepol = herme.poly2herme(pol)
|
||||
hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2)
|
||||
res = herme.herme2poly(hermeint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with default k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herme.hermeint(tgt, m=1)
|
||||
res = herme.hermeint(pol, m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with defined k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herme.hermeint(tgt, m=1, k=[k])
|
||||
res = herme.hermeint(pol, m=j, k=list(range(j)))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with lbnd
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1)
|
||||
res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = herme.hermeint(tgt, m=1, k=[k], scl=2)
|
||||
res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_hermeint_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T
|
||||
res = herme.hermeint(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([herme.hermeint(c) for c in c2d])
|
||||
res = herme.hermeint(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d])
|
||||
res = herme.hermeint(c2d, k=3, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestDerivative(object):
|
||||
|
||||
def test_hermeder(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, herme.hermeder, [0], .5)
|
||||
assert_raises(ValueError, herme.hermeder, [0], -1)
|
||||
|
||||
# check that zeroth derivative does nothing
|
||||
for i in range(5):
|
||||
tgt = [0]*i + [1]
|
||||
res = herme.hermeder(tgt, m=0)
|
||||
assert_equal(trim(res), trim(tgt))
|
||||
|
||||
# check that derivation is the inverse of integration
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = herme.hermeder(herme.hermeint(tgt, m=j), m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check derivation with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = herme.hermeder(
|
||||
herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_hermeder_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T
|
||||
res = herme.hermeder(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([herme.hermeder(c) for c in c2d])
|
||||
res = herme.hermeder(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestVander(object):
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
|
||||
def test_hermevander(self):
|
||||
# check for 1d x
|
||||
x = np.arange(3)
|
||||
v = herme.hermevander(x, 3)
|
||||
assert_(v.shape == (3, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], herme.hermeval(x, coef))
|
||||
|
||||
# check for 2d x
|
||||
x = np.array([[1, 2], [3, 4], [5, 6]])
|
||||
v = herme.hermevander(x, 3)
|
||||
assert_(v.shape == (3, 2, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], herme.hermeval(x, coef))
|
||||
|
||||
def test_hermevander2d(self):
|
||||
# also tests hermeval2d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3))
|
||||
van = herme.hermevander2d(x1, x2, [1, 2])
|
||||
tgt = herme.hermeval2d(x1, x2, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = herme.hermevander2d([x1], [x2], [1, 2])
|
||||
assert_(van.shape == (1, 5, 6))
|
||||
|
||||
def test_hermevander3d(self):
|
||||
# also tests hermeval3d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3, 4))
|
||||
van = herme.hermevander3d(x1, x2, x3, [1, 2, 3])
|
||||
tgt = herme.hermeval3d(x1, x2, x3, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3])
|
||||
assert_(van.shape == (1, 5, 24))
|
||||
|
||||
|
||||
class TestFitting(object):
|
||||
|
||||
def test_hermefit(self):
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
|
||||
def f2(x):
|
||||
return x**4 + x**2 + 1
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, herme.hermefit, [1], [1], -1)
|
||||
assert_raises(TypeError, herme.hermefit, [[1]], [1], 0)
|
||||
assert_raises(TypeError, herme.hermefit, [], [1], 0)
|
||||
assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0)
|
||||
assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0)
|
||||
assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0)
|
||||
assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]])
|
||||
assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1])
|
||||
assert_raises(ValueError, herme.hermefit, [1], [1], [-1,])
|
||||
assert_raises(ValueError, herme.hermefit, [1], [1], [2, -1, 6])
|
||||
assert_raises(TypeError, herme.hermefit, [1], [1], [])
|
||||
|
||||
# Test fit
|
||||
x = np.linspace(0, 2)
|
||||
y = f(x)
|
||||
#
|
||||
coef3 = herme.hermefit(x, y, 3)
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(herme.hermeval(x, coef3), y)
|
||||
coef3 = herme.hermefit(x, y, [0, 1, 2, 3])
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(herme.hermeval(x, coef3), y)
|
||||
#
|
||||
coef4 = herme.hermefit(x, y, 4)
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(herme.hermeval(x, coef4), y)
|
||||
coef4 = herme.hermefit(x, y, [0, 1, 2, 3, 4])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(herme.hermeval(x, coef4), y)
|
||||
# check things still work if deg is not in strict increasing
|
||||
coef4 = herme.hermefit(x, y, [2, 3, 4, 1, 0])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(herme.hermeval(x, coef4), y)
|
||||
#
|
||||
coef2d = herme.hermefit(x, np.array([y, y]).T, 3)
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
coef2d = herme.hermefit(x, np.array([y, y]).T, [0, 1, 2, 3])
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
# test weighting
|
||||
w = np.zeros_like(x)
|
||||
yw = y.copy()
|
||||
w[1::2] = 1
|
||||
y[0::2] = 0
|
||||
wcoef3 = herme.hermefit(x, yw, 3, w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
wcoef3 = herme.hermefit(x, yw, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
#
|
||||
wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
# test scaling with complex values x points whose square
|
||||
# is zero when summed.
|
||||
x = [1, 1j, -1, -1j]
|
||||
assert_almost_equal(herme.hermefit(x, x, 1), [0, 1])
|
||||
assert_almost_equal(herme.hermefit(x, x, [0, 1]), [0, 1])
|
||||
# test fitting only even Legendre polynomials
|
||||
x = np.linspace(-1, 1)
|
||||
y = f2(x)
|
||||
coef1 = herme.hermefit(x, y, 4)
|
||||
assert_almost_equal(herme.hermeval(x, coef1), y)
|
||||
coef2 = herme.hermefit(x, y, [0, 2, 4])
|
||||
assert_almost_equal(herme.hermeval(x, coef2), y)
|
||||
assert_almost_equal(coef1, coef2)
|
||||
|
||||
|
||||
class TestCompanion(object):
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, herme.hermecompanion, [])
|
||||
assert_raises(ValueError, herme.hermecompanion, [1])
|
||||
|
||||
def test_dimensions(self):
|
||||
for i in range(1, 5):
|
||||
coef = [0]*i + [1]
|
||||
assert_(herme.hermecompanion(coef).shape == (i, i))
|
||||
|
||||
def test_linear_root(self):
|
||||
assert_(herme.hermecompanion([1, 2])[0, 0] == -.5)
|
||||
|
||||
|
||||
class TestGauss(object):
|
||||
|
||||
def test_100(self):
|
||||
x, w = herme.hermegauss(100)
|
||||
|
||||
# test orthogonality. Note that the results need to be normalized,
|
||||
# otherwise the huge values that can arise from fast growing
|
||||
# functions like Laguerre can be very confusing.
|
||||
v = herme.hermevander(x, 99)
|
||||
vv = np.dot(v.T * w, v)
|
||||
vd = 1/np.sqrt(vv.diagonal())
|
||||
vv = vd[:, None] * vv * vd
|
||||
assert_almost_equal(vv, np.eye(100))
|
||||
|
||||
# check that the integral of 1 is correct
|
||||
tgt = np.sqrt(2*np.pi)
|
||||
assert_almost_equal(w.sum(), tgt)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_hermefromroots(self):
|
||||
res = herme.hermefromroots([])
|
||||
assert_almost_equal(trim(res), [1])
|
||||
for i in range(1, 5):
|
||||
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
|
||||
pol = herme.hermefromroots(roots)
|
||||
res = herme.hermeval(roots, pol)
|
||||
tgt = 0
|
||||
assert_(len(pol) == i + 1)
|
||||
assert_almost_equal(herme.herme2poly(pol)[-1], 1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
def test_hermeroots(self):
|
||||
assert_almost_equal(herme.hermeroots([1]), [])
|
||||
assert_almost_equal(herme.hermeroots([1, 1]), [-1])
|
||||
for i in range(2, 5):
|
||||
tgt = np.linspace(-1, 1, i)
|
||||
res = herme.hermeroots(herme.hermefromroots(tgt))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_hermetrim(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, herme.hermetrim, coef, -1)
|
||||
|
||||
# Test results
|
||||
assert_equal(herme.hermetrim(coef), coef[:-1])
|
||||
assert_equal(herme.hermetrim(coef, 1), coef[:-3])
|
||||
assert_equal(herme.hermetrim(coef, 2), [0])
|
||||
|
||||
def test_hermeline(self):
|
||||
assert_equal(herme.hermeline(3, 4), [3, 4])
|
||||
|
||||
def test_herme2poly(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i])
|
||||
|
||||
def test_poly2herme(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1])
|
||||
|
||||
def test_weight(self):
|
||||
x = np.linspace(-5, 5, 11)
|
||||
tgt = np.exp(-.5*x**2)
|
||||
res = herme.hermeweight(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,533 @@
|
||||
"""Tests for laguerre module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.laguerre as lag
|
||||
from numpy.polynomial.polynomial import polyval
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
L0 = np.array([1])/1
|
||||
L1 = np.array([1, -1])/1
|
||||
L2 = np.array([2, -4, 1])/2
|
||||
L3 = np.array([6, -18, 9, -1])/6
|
||||
L4 = np.array([24, -96, 72, -16, 1])/24
|
||||
L5 = np.array([120, -600, 600, -200, 25, -1])/120
|
||||
L6 = np.array([720, -4320, 5400, -2400, 450, -36, 1])/720
|
||||
|
||||
Llist = [L0, L1, L2, L3, L4, L5, L6]
|
||||
|
||||
|
||||
def trim(x):
|
||||
return lag.lagtrim(x, tol=1e-6)
|
||||
|
||||
|
||||
class TestConstants(object):
|
||||
|
||||
def test_lagdomain(self):
|
||||
assert_equal(lag.lagdomain, [0, 1])
|
||||
|
||||
def test_lagzero(self):
|
||||
assert_equal(lag.lagzero, [0])
|
||||
|
||||
def test_lagone(self):
|
||||
assert_equal(lag.lagone, [1])
|
||||
|
||||
def test_lagx(self):
|
||||
assert_equal(lag.lagx, [1, -1])
|
||||
|
||||
|
||||
class TestArithmetic(object):
|
||||
x = np.linspace(-3, 3, 100)
|
||||
|
||||
def test_lagadd(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] += 1
|
||||
res = lag.lagadd([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_lagsub(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] -= 1
|
||||
res = lag.lagsub([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_lagmulx(self):
|
||||
assert_equal(lag.lagmulx([0]), [0])
|
||||
assert_equal(lag.lagmulx([1]), [1, -1])
|
||||
for i in range(1, 5):
|
||||
ser = [0]*i + [1]
|
||||
tgt = [0]*(i - 1) + [-i, 2*i + 1, -(i + 1)]
|
||||
assert_almost_equal(lag.lagmulx(ser), tgt)
|
||||
|
||||
def test_lagmul(self):
|
||||
# check values of result
|
||||
for i in range(5):
|
||||
pol1 = [0]*i + [1]
|
||||
val1 = lag.lagval(self.x, pol1)
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
pol2 = [0]*j + [1]
|
||||
val2 = lag.lagval(self.x, pol2)
|
||||
pol3 = lag.lagmul(pol1, pol2)
|
||||
val3 = lag.lagval(self.x, pol3)
|
||||
assert_(len(pol3) == i + j + 1, msg)
|
||||
assert_almost_equal(val3, val1*val2, err_msg=msg)
|
||||
|
||||
def test_lagdiv(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
ci = [0]*i + [1]
|
||||
cj = [0]*j + [1]
|
||||
tgt = lag.lagadd(ci, cj)
|
||||
quo, rem = lag.lagdiv(tgt, ci)
|
||||
res = lag.lagadd(lag.lagmul(quo, ci), rem)
|
||||
assert_almost_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
|
||||
class TestEvaluation(object):
|
||||
# coefficients of 1 + 2*x + 3*x**2
|
||||
c1d = np.array([9., -14., 6.])
|
||||
c2d = np.einsum('i,j->ij', c1d, c1d)
|
||||
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
|
||||
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
y = polyval(x, [1., 2., 3.])
|
||||
|
||||
def test_lagval(self):
|
||||
#check empty input
|
||||
assert_equal(lag.lagval([], [1]).size, 0)
|
||||
|
||||
#check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [polyval(x, c) for c in Llist]
|
||||
for i in range(7):
|
||||
msg = "At i=%d" % i
|
||||
tgt = y[i]
|
||||
res = lag.lagval(x, [0]*i + [1])
|
||||
assert_almost_equal(res, tgt, err_msg=msg)
|
||||
|
||||
#check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(lag.lagval(x, [1]).shape, dims)
|
||||
assert_equal(lag.lagval(x, [1, 0]).shape, dims)
|
||||
assert_equal(lag.lagval(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
def test_lagval2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, lag.lagval2d, x1, x2[:2], self.c2d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2
|
||||
res = lag.lagval2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = lag.lagval2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_lagval3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, lag.lagval3d, x1, x2, x3[:2], self.c3d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2*y3
|
||||
res = lag.lagval3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = lag.lagval3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_laggrid2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j->ij', y1, y2)
|
||||
res = lag.laggrid2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = lag.laggrid2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3)*2)
|
||||
|
||||
def test_laggrid3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
|
||||
res = lag.laggrid3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = lag.laggrid3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3)*3)
|
||||
|
||||
|
||||
class TestIntegral(object):
|
||||
|
||||
def test_lagint(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, lag.lagint, [0], .5)
|
||||
assert_raises(ValueError, lag.lagint, [0], -1)
|
||||
assert_raises(ValueError, lag.lagint, [0], 1, [0, 0])
|
||||
assert_raises(ValueError, lag.lagint, [0], lbnd=[0])
|
||||
assert_raises(ValueError, lag.lagint, [0], scl=[0])
|
||||
assert_raises(ValueError, lag.lagint, [0], axis=.5)
|
||||
|
||||
# test integration of zero polynomial
|
||||
for i in range(2, 5):
|
||||
k = [0]*(i - 2) + [1]
|
||||
res = lag.lagint([0], m=i, k=k)
|
||||
assert_almost_equal(res, [1, -1])
|
||||
|
||||
# check single integration with integration constant
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [1/scl]
|
||||
lagpol = lag.poly2lag(pol)
|
||||
lagint = lag.lagint(lagpol, m=1, k=[i])
|
||||
res = lag.lag2poly(lagint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check single integration with integration constant and lbnd
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
lagpol = lag.poly2lag(pol)
|
||||
lagint = lag.lagint(lagpol, m=1, k=[i], lbnd=-1)
|
||||
assert_almost_equal(lag.lagval(-1, lagint), i)
|
||||
|
||||
# check single integration with integration constant and scaling
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [2/scl]
|
||||
lagpol = lag.poly2lag(pol)
|
||||
lagint = lag.lagint(lagpol, m=1, k=[i], scl=2)
|
||||
res = lag.lag2poly(lagint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with default k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = lag.lagint(tgt, m=1)
|
||||
res = lag.lagint(pol, m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with defined k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = lag.lagint(tgt, m=1, k=[k])
|
||||
res = lag.lagint(pol, m=j, k=list(range(j)))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with lbnd
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = lag.lagint(tgt, m=1, k=[k], lbnd=-1)
|
||||
res = lag.lagint(pol, m=j, k=list(range(j)), lbnd=-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = lag.lagint(tgt, m=1, k=[k], scl=2)
|
||||
res = lag.lagint(pol, m=j, k=list(range(j)), scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_lagint_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([lag.lagint(c) for c in c2d.T]).T
|
||||
res = lag.lagint(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([lag.lagint(c) for c in c2d])
|
||||
res = lag.lagint(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([lag.lagint(c, k=3) for c in c2d])
|
||||
res = lag.lagint(c2d, k=3, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestDerivative(object):
|
||||
|
||||
def test_lagder(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, lag.lagder, [0], .5)
|
||||
assert_raises(ValueError, lag.lagder, [0], -1)
|
||||
|
||||
# check that zeroth derivative does nothing
|
||||
for i in range(5):
|
||||
tgt = [0]*i + [1]
|
||||
res = lag.lagder(tgt, m=0)
|
||||
assert_equal(trim(res), trim(tgt))
|
||||
|
||||
# check that derivation is the inverse of integration
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = lag.lagder(lag.lagint(tgt, m=j), m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check derivation with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = lag.lagder(lag.lagint(tgt, m=j, scl=2), m=j, scl=.5)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_lagder_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([lag.lagder(c) for c in c2d.T]).T
|
||||
res = lag.lagder(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([lag.lagder(c) for c in c2d])
|
||||
res = lag.lagder(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestVander(object):
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
|
||||
def test_lagvander(self):
|
||||
# check for 1d x
|
||||
x = np.arange(3)
|
||||
v = lag.lagvander(x, 3)
|
||||
assert_(v.shape == (3, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], lag.lagval(x, coef))
|
||||
|
||||
# check for 2d x
|
||||
x = np.array([[1, 2], [3, 4], [5, 6]])
|
||||
v = lag.lagvander(x, 3)
|
||||
assert_(v.shape == (3, 2, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], lag.lagval(x, coef))
|
||||
|
||||
def test_lagvander2d(self):
|
||||
# also tests lagval2d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3))
|
||||
van = lag.lagvander2d(x1, x2, [1, 2])
|
||||
tgt = lag.lagval2d(x1, x2, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = lag.lagvander2d([x1], [x2], [1, 2])
|
||||
assert_(van.shape == (1, 5, 6))
|
||||
|
||||
def test_lagvander3d(self):
|
||||
# also tests lagval3d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3, 4))
|
||||
van = lag.lagvander3d(x1, x2, x3, [1, 2, 3])
|
||||
tgt = lag.lagval3d(x1, x2, x3, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = lag.lagvander3d([x1], [x2], [x3], [1, 2, 3])
|
||||
assert_(van.shape == (1, 5, 24))
|
||||
|
||||
|
||||
class TestFitting(object):
|
||||
|
||||
def test_lagfit(self):
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, lag.lagfit, [1], [1], -1)
|
||||
assert_raises(TypeError, lag.lagfit, [[1]], [1], 0)
|
||||
assert_raises(TypeError, lag.lagfit, [], [1], 0)
|
||||
assert_raises(TypeError, lag.lagfit, [1], [[[1]]], 0)
|
||||
assert_raises(TypeError, lag.lagfit, [1, 2], [1], 0)
|
||||
assert_raises(TypeError, lag.lagfit, [1], [1, 2], 0)
|
||||
assert_raises(TypeError, lag.lagfit, [1], [1], 0, w=[[1]])
|
||||
assert_raises(TypeError, lag.lagfit, [1], [1], 0, w=[1, 1])
|
||||
assert_raises(ValueError, lag.lagfit, [1], [1], [-1,])
|
||||
assert_raises(ValueError, lag.lagfit, [1], [1], [2, -1, 6])
|
||||
assert_raises(TypeError, lag.lagfit, [1], [1], [])
|
||||
|
||||
# Test fit
|
||||
x = np.linspace(0, 2)
|
||||
y = f(x)
|
||||
#
|
||||
coef3 = lag.lagfit(x, y, 3)
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(lag.lagval(x, coef3), y)
|
||||
coef3 = lag.lagfit(x, y, [0, 1, 2, 3])
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(lag.lagval(x, coef3), y)
|
||||
#
|
||||
coef4 = lag.lagfit(x, y, 4)
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(lag.lagval(x, coef4), y)
|
||||
coef4 = lag.lagfit(x, y, [0, 1, 2, 3, 4])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(lag.lagval(x, coef4), y)
|
||||
#
|
||||
coef2d = lag.lagfit(x, np.array([y, y]).T, 3)
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
coef2d = lag.lagfit(x, np.array([y, y]).T, [0, 1, 2, 3])
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
# test weighting
|
||||
w = np.zeros_like(x)
|
||||
yw = y.copy()
|
||||
w[1::2] = 1
|
||||
y[0::2] = 0
|
||||
wcoef3 = lag.lagfit(x, yw, 3, w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
wcoef3 = lag.lagfit(x, yw, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
#
|
||||
wcoef2d = lag.lagfit(x, np.array([yw, yw]).T, 3, w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
wcoef2d = lag.lagfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
# test scaling with complex values x points whose square
|
||||
# is zero when summed.
|
||||
x = [1, 1j, -1, -1j]
|
||||
assert_almost_equal(lag.lagfit(x, x, 1), [1, -1])
|
||||
assert_almost_equal(lag.lagfit(x, x, [0, 1]), [1, -1])
|
||||
|
||||
|
||||
class TestCompanion(object):
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, lag.lagcompanion, [])
|
||||
assert_raises(ValueError, lag.lagcompanion, [1])
|
||||
|
||||
def test_dimensions(self):
|
||||
for i in range(1, 5):
|
||||
coef = [0]*i + [1]
|
||||
assert_(lag.lagcompanion(coef).shape == (i, i))
|
||||
|
||||
def test_linear_root(self):
|
||||
assert_(lag.lagcompanion([1, 2])[0, 0] == 1.5)
|
||||
|
||||
|
||||
class TestGauss(object):
|
||||
|
||||
def test_100(self):
|
||||
x, w = lag.laggauss(100)
|
||||
|
||||
# test orthogonality. Note that the results need to be normalized,
|
||||
# otherwise the huge values that can arise from fast growing
|
||||
# functions like Laguerre can be very confusing.
|
||||
v = lag.lagvander(x, 99)
|
||||
vv = np.dot(v.T * w, v)
|
||||
vd = 1/np.sqrt(vv.diagonal())
|
||||
vv = vd[:, None] * vv * vd
|
||||
assert_almost_equal(vv, np.eye(100))
|
||||
|
||||
# check that the integral of 1 is correct
|
||||
tgt = 1.0
|
||||
assert_almost_equal(w.sum(), tgt)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_lagfromroots(self):
|
||||
res = lag.lagfromroots([])
|
||||
assert_almost_equal(trim(res), [1])
|
||||
for i in range(1, 5):
|
||||
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
|
||||
pol = lag.lagfromroots(roots)
|
||||
res = lag.lagval(roots, pol)
|
||||
tgt = 0
|
||||
assert_(len(pol) == i + 1)
|
||||
assert_almost_equal(lag.lag2poly(pol)[-1], 1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
def test_lagroots(self):
|
||||
assert_almost_equal(lag.lagroots([1]), [])
|
||||
assert_almost_equal(lag.lagroots([0, 1]), [1])
|
||||
for i in range(2, 5):
|
||||
tgt = np.linspace(0, 3, i)
|
||||
res = lag.lagroots(lag.lagfromroots(tgt))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_lagtrim(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, lag.lagtrim, coef, -1)
|
||||
|
||||
# Test results
|
||||
assert_equal(lag.lagtrim(coef), coef[:-1])
|
||||
assert_equal(lag.lagtrim(coef, 1), coef[:-3])
|
||||
assert_equal(lag.lagtrim(coef, 2), [0])
|
||||
|
||||
def test_lagline(self):
|
||||
assert_equal(lag.lagline(3, 4), [7, -4])
|
||||
|
||||
def test_lag2poly(self):
|
||||
for i in range(7):
|
||||
assert_almost_equal(lag.lag2poly([0]*i + [1]), Llist[i])
|
||||
|
||||
def test_poly2lag(self):
|
||||
for i in range(7):
|
||||
assert_almost_equal(lag.poly2lag(Llist[i]), [0]*i + [1])
|
||||
|
||||
def test_weight(self):
|
||||
x = np.linspace(0, 10, 11)
|
||||
tgt = np.exp(-x)
|
||||
res = lag.lagweight(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,552 @@
|
||||
"""Tests for legendre module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.legendre as leg
|
||||
from numpy.polynomial.polynomial import polyval
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
L0 = np.array([1])
|
||||
L1 = np.array([0, 1])
|
||||
L2 = np.array([-1, 0, 3])/2
|
||||
L3 = np.array([0, -3, 0, 5])/2
|
||||
L4 = np.array([3, 0, -30, 0, 35])/8
|
||||
L5 = np.array([0, 15, 0, -70, 0, 63])/8
|
||||
L6 = np.array([-5, 0, 105, 0, -315, 0, 231])/16
|
||||
L7 = np.array([0, -35, 0, 315, 0, -693, 0, 429])/16
|
||||
L8 = np.array([35, 0, -1260, 0, 6930, 0, -12012, 0, 6435])/128
|
||||
L9 = np.array([0, 315, 0, -4620, 0, 18018, 0, -25740, 0, 12155])/128
|
||||
|
||||
Llist = [L0, L1, L2, L3, L4, L5, L6, L7, L8, L9]
|
||||
|
||||
|
||||
def trim(x):
|
||||
return leg.legtrim(x, tol=1e-6)
|
||||
|
||||
|
||||
class TestConstants(object):
|
||||
|
||||
def test_legdomain(self):
|
||||
assert_equal(leg.legdomain, [-1, 1])
|
||||
|
||||
def test_legzero(self):
|
||||
assert_equal(leg.legzero, [0])
|
||||
|
||||
def test_legone(self):
|
||||
assert_equal(leg.legone, [1])
|
||||
|
||||
def test_legx(self):
|
||||
assert_equal(leg.legx, [0, 1])
|
||||
|
||||
|
||||
class TestArithmetic(object):
|
||||
x = np.linspace(-1, 1, 100)
|
||||
|
||||
def test_legadd(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] += 1
|
||||
res = leg.legadd([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_legsub(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] -= 1
|
||||
res = leg.legsub([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_legmulx(self):
|
||||
assert_equal(leg.legmulx([0]), [0])
|
||||
assert_equal(leg.legmulx([1]), [0, 1])
|
||||
for i in range(1, 5):
|
||||
tmp = 2*i + 1
|
||||
ser = [0]*i + [1]
|
||||
tgt = [0]*(i - 1) + [i/tmp, 0, (i + 1)/tmp]
|
||||
assert_equal(leg.legmulx(ser), tgt)
|
||||
|
||||
def test_legmul(self):
|
||||
# check values of result
|
||||
for i in range(5):
|
||||
pol1 = [0]*i + [1]
|
||||
val1 = leg.legval(self.x, pol1)
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
pol2 = [0]*j + [1]
|
||||
val2 = leg.legval(self.x, pol2)
|
||||
pol3 = leg.legmul(pol1, pol2)
|
||||
val3 = leg.legval(self.x, pol3)
|
||||
assert_(len(pol3) == i + j + 1, msg)
|
||||
assert_almost_equal(val3, val1*val2, err_msg=msg)
|
||||
|
||||
def test_legdiv(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
ci = [0]*i + [1]
|
||||
cj = [0]*j + [1]
|
||||
tgt = leg.legadd(ci, cj)
|
||||
quo, rem = leg.legdiv(tgt, ci)
|
||||
res = leg.legadd(leg.legmul(quo, ci), rem)
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
|
||||
class TestEvaluation(object):
|
||||
# coefficients of 1 + 2*x + 3*x**2
|
||||
c1d = np.array([2., 2., 2.])
|
||||
c2d = np.einsum('i,j->ij', c1d, c1d)
|
||||
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
|
||||
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
y = polyval(x, [1., 2., 3.])
|
||||
|
||||
def test_legval(self):
|
||||
#check empty input
|
||||
assert_equal(leg.legval([], [1]).size, 0)
|
||||
|
||||
#check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [polyval(x, c) for c in Llist]
|
||||
for i in range(10):
|
||||
msg = "At i=%d" % i
|
||||
tgt = y[i]
|
||||
res = leg.legval(x, [0]*i + [1])
|
||||
assert_almost_equal(res, tgt, err_msg=msg)
|
||||
|
||||
#check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(leg.legval(x, [1]).shape, dims)
|
||||
assert_equal(leg.legval(x, [1, 0]).shape, dims)
|
||||
assert_equal(leg.legval(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
def test_legval2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, leg.legval2d, x1, x2[:2], self.c2d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2
|
||||
res = leg.legval2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = leg.legval2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_legval3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, leg.legval3d, x1, x2, x3[:2], self.c3d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2*y3
|
||||
res = leg.legval3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = leg.legval3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_leggrid2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j->ij', y1, y2)
|
||||
res = leg.leggrid2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = leg.leggrid2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3)*2)
|
||||
|
||||
def test_leggrid3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
|
||||
res = leg.leggrid3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = leg.leggrid3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3)*3)
|
||||
|
||||
|
||||
class TestIntegral(object):
|
||||
|
||||
def test_legint(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, leg.legint, [0], .5)
|
||||
assert_raises(ValueError, leg.legint, [0], -1)
|
||||
assert_raises(ValueError, leg.legint, [0], 1, [0, 0])
|
||||
assert_raises(ValueError, leg.legint, [0], lbnd=[0])
|
||||
assert_raises(ValueError, leg.legint, [0], scl=[0])
|
||||
assert_raises(ValueError, leg.legint, [0], axis=.5)
|
||||
|
||||
# test integration of zero polynomial
|
||||
for i in range(2, 5):
|
||||
k = [0]*(i - 2) + [1]
|
||||
res = leg.legint([0], m=i, k=k)
|
||||
assert_almost_equal(res, [0, 1])
|
||||
|
||||
# check single integration with integration constant
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [1/scl]
|
||||
legpol = leg.poly2leg(pol)
|
||||
legint = leg.legint(legpol, m=1, k=[i])
|
||||
res = leg.leg2poly(legint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check single integration with integration constant and lbnd
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
legpol = leg.poly2leg(pol)
|
||||
legint = leg.legint(legpol, m=1, k=[i], lbnd=-1)
|
||||
assert_almost_equal(leg.legval(-1, legint), i)
|
||||
|
||||
# check single integration with integration constant and scaling
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [2/scl]
|
||||
legpol = leg.poly2leg(pol)
|
||||
legint = leg.legint(legpol, m=1, k=[i], scl=2)
|
||||
res = leg.leg2poly(legint)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with default k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = leg.legint(tgt, m=1)
|
||||
res = leg.legint(pol, m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with defined k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = leg.legint(tgt, m=1, k=[k])
|
||||
res = leg.legint(pol, m=j, k=list(range(j)))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with lbnd
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = leg.legint(tgt, m=1, k=[k], lbnd=-1)
|
||||
res = leg.legint(pol, m=j, k=list(range(j)), lbnd=-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = leg.legint(tgt, m=1, k=[k], scl=2)
|
||||
res = leg.legint(pol, m=j, k=list(range(j)), scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_legint_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([leg.legint(c) for c in c2d.T]).T
|
||||
res = leg.legint(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([leg.legint(c) for c in c2d])
|
||||
res = leg.legint(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([leg.legint(c, k=3) for c in c2d])
|
||||
res = leg.legint(c2d, k=3, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestDerivative(object):
|
||||
|
||||
def test_legder(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, leg.legder, [0], .5)
|
||||
assert_raises(ValueError, leg.legder, [0], -1)
|
||||
|
||||
# check that zeroth derivative does nothing
|
||||
for i in range(5):
|
||||
tgt = [0]*i + [1]
|
||||
res = leg.legder(tgt, m=0)
|
||||
assert_equal(trim(res), trim(tgt))
|
||||
|
||||
# check that derivation is the inverse of integration
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = leg.legder(leg.legint(tgt, m=j), m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check derivation with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = leg.legder(leg.legint(tgt, m=j, scl=2), m=j, scl=.5)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_legder_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([leg.legder(c) for c in c2d.T]).T
|
||||
res = leg.legder(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([leg.legder(c) for c in c2d])
|
||||
res = leg.legder(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestVander(object):
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
|
||||
def test_legvander(self):
|
||||
# check for 1d x
|
||||
x = np.arange(3)
|
||||
v = leg.legvander(x, 3)
|
||||
assert_(v.shape == (3, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], leg.legval(x, coef))
|
||||
|
||||
# check for 2d x
|
||||
x = np.array([[1, 2], [3, 4], [5, 6]])
|
||||
v = leg.legvander(x, 3)
|
||||
assert_(v.shape == (3, 2, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], leg.legval(x, coef))
|
||||
|
||||
def test_legvander2d(self):
|
||||
# also tests polyval2d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3))
|
||||
van = leg.legvander2d(x1, x2, [1, 2])
|
||||
tgt = leg.legval2d(x1, x2, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = leg.legvander2d([x1], [x2], [1, 2])
|
||||
assert_(van.shape == (1, 5, 6))
|
||||
|
||||
def test_legvander3d(self):
|
||||
# also tests polyval3d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3, 4))
|
||||
van = leg.legvander3d(x1, x2, x3, [1, 2, 3])
|
||||
tgt = leg.legval3d(x1, x2, x3, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = leg.legvander3d([x1], [x2], [x3], [1, 2, 3])
|
||||
assert_(van.shape == (1, 5, 24))
|
||||
|
||||
|
||||
class TestFitting(object):
|
||||
|
||||
def test_legfit(self):
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
|
||||
def f2(x):
|
||||
return x**4 + x**2 + 1
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, leg.legfit, [1], [1], -1)
|
||||
assert_raises(TypeError, leg.legfit, [[1]], [1], 0)
|
||||
assert_raises(TypeError, leg.legfit, [], [1], 0)
|
||||
assert_raises(TypeError, leg.legfit, [1], [[[1]]], 0)
|
||||
assert_raises(TypeError, leg.legfit, [1, 2], [1], 0)
|
||||
assert_raises(TypeError, leg.legfit, [1], [1, 2], 0)
|
||||
assert_raises(TypeError, leg.legfit, [1], [1], 0, w=[[1]])
|
||||
assert_raises(TypeError, leg.legfit, [1], [1], 0, w=[1, 1])
|
||||
assert_raises(ValueError, leg.legfit, [1], [1], [-1,])
|
||||
assert_raises(ValueError, leg.legfit, [1], [1], [2, -1, 6])
|
||||
assert_raises(TypeError, leg.legfit, [1], [1], [])
|
||||
|
||||
# Test fit
|
||||
x = np.linspace(0, 2)
|
||||
y = f(x)
|
||||
#
|
||||
coef3 = leg.legfit(x, y, 3)
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(leg.legval(x, coef3), y)
|
||||
coef3 = leg.legfit(x, y, [0, 1, 2, 3])
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(leg.legval(x, coef3), y)
|
||||
#
|
||||
coef4 = leg.legfit(x, y, 4)
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(leg.legval(x, coef4), y)
|
||||
coef4 = leg.legfit(x, y, [0, 1, 2, 3, 4])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(leg.legval(x, coef4), y)
|
||||
# check things still work if deg is not in strict increasing
|
||||
coef4 = leg.legfit(x, y, [2, 3, 4, 1, 0])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(leg.legval(x, coef4), y)
|
||||
#
|
||||
coef2d = leg.legfit(x, np.array([y, y]).T, 3)
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
coef2d = leg.legfit(x, np.array([y, y]).T, [0, 1, 2, 3])
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
# test weighting
|
||||
w = np.zeros_like(x)
|
||||
yw = y.copy()
|
||||
w[1::2] = 1
|
||||
y[0::2] = 0
|
||||
wcoef3 = leg.legfit(x, yw, 3, w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
wcoef3 = leg.legfit(x, yw, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
#
|
||||
wcoef2d = leg.legfit(x, np.array([yw, yw]).T, 3, w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
wcoef2d = leg.legfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
# test scaling with complex values x points whose square
|
||||
# is zero when summed.
|
||||
x = [1, 1j, -1, -1j]
|
||||
assert_almost_equal(leg.legfit(x, x, 1), [0, 1])
|
||||
assert_almost_equal(leg.legfit(x, x, [0, 1]), [0, 1])
|
||||
# test fitting only even Legendre polynomials
|
||||
x = np.linspace(-1, 1)
|
||||
y = f2(x)
|
||||
coef1 = leg.legfit(x, y, 4)
|
||||
assert_almost_equal(leg.legval(x, coef1), y)
|
||||
coef2 = leg.legfit(x, y, [0, 2, 4])
|
||||
assert_almost_equal(leg.legval(x, coef2), y)
|
||||
assert_almost_equal(coef1, coef2)
|
||||
|
||||
|
||||
class TestCompanion(object):
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, leg.legcompanion, [])
|
||||
assert_raises(ValueError, leg.legcompanion, [1])
|
||||
|
||||
def test_dimensions(self):
|
||||
for i in range(1, 5):
|
||||
coef = [0]*i + [1]
|
||||
assert_(leg.legcompanion(coef).shape == (i, i))
|
||||
|
||||
def test_linear_root(self):
|
||||
assert_(leg.legcompanion([1, 2])[0, 0] == -.5)
|
||||
|
||||
|
||||
class TestGauss(object):
|
||||
|
||||
def test_100(self):
|
||||
x, w = leg.leggauss(100)
|
||||
|
||||
# test orthogonality. Note that the results need to be normalized,
|
||||
# otherwise the huge values that can arise from fast growing
|
||||
# functions like Laguerre can be very confusing.
|
||||
v = leg.legvander(x, 99)
|
||||
vv = np.dot(v.T * w, v)
|
||||
vd = 1/np.sqrt(vv.diagonal())
|
||||
vv = vd[:, None] * vv * vd
|
||||
assert_almost_equal(vv, np.eye(100))
|
||||
|
||||
# check that the integral of 1 is correct
|
||||
tgt = 2.0
|
||||
assert_almost_equal(w.sum(), tgt)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_legfromroots(self):
|
||||
res = leg.legfromroots([])
|
||||
assert_almost_equal(trim(res), [1])
|
||||
for i in range(1, 5):
|
||||
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
|
||||
pol = leg.legfromroots(roots)
|
||||
res = leg.legval(roots, pol)
|
||||
tgt = 0
|
||||
assert_(len(pol) == i + 1)
|
||||
assert_almost_equal(leg.leg2poly(pol)[-1], 1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
def test_legroots(self):
|
||||
assert_almost_equal(leg.legroots([1]), [])
|
||||
assert_almost_equal(leg.legroots([1, 2]), [-.5])
|
||||
for i in range(2, 5):
|
||||
tgt = np.linspace(-1, 1, i)
|
||||
res = leg.legroots(leg.legfromroots(tgt))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_legtrim(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, leg.legtrim, coef, -1)
|
||||
|
||||
# Test results
|
||||
assert_equal(leg.legtrim(coef), coef[:-1])
|
||||
assert_equal(leg.legtrim(coef, 1), coef[:-3])
|
||||
assert_equal(leg.legtrim(coef, 2), [0])
|
||||
|
||||
def test_legline(self):
|
||||
assert_equal(leg.legline(3, 4), [3, 4])
|
||||
|
||||
def test_leg2poly(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(leg.leg2poly([0]*i + [1]), Llist[i])
|
||||
|
||||
def test_poly2leg(self):
|
||||
for i in range(10):
|
||||
assert_almost_equal(leg.poly2leg(Llist[i]), [0]*i + [1])
|
||||
|
||||
def test_weight(self):
|
||||
x = np.linspace(-1, 1, 11)
|
||||
tgt = 1.
|
||||
res = leg.legweight(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,572 @@
|
||||
"""Tests for polynomial module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.polynomial as poly
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
|
||||
def trim(x):
|
||||
return poly.polytrim(x, tol=1e-6)
|
||||
|
||||
T0 = [1]
|
||||
T1 = [0, 1]
|
||||
T2 = [-1, 0, 2]
|
||||
T3 = [0, -3, 0, 4]
|
||||
T4 = [1, 0, -8, 0, 8]
|
||||
T5 = [0, 5, 0, -20, 0, 16]
|
||||
T6 = [-1, 0, 18, 0, -48, 0, 32]
|
||||
T7 = [0, -7, 0, 56, 0, -112, 0, 64]
|
||||
T8 = [1, 0, -32, 0, 160, 0, -256, 0, 128]
|
||||
T9 = [0, 9, 0, -120, 0, 432, 0, -576, 0, 256]
|
||||
|
||||
Tlist = [T0, T1, T2, T3, T4, T5, T6, T7, T8, T9]
|
||||
|
||||
|
||||
class TestConstants(object):
|
||||
|
||||
def test_polydomain(self):
|
||||
assert_equal(poly.polydomain, [-1, 1])
|
||||
|
||||
def test_polyzero(self):
|
||||
assert_equal(poly.polyzero, [0])
|
||||
|
||||
def test_polyone(self):
|
||||
assert_equal(poly.polyone, [1])
|
||||
|
||||
def test_polyx(self):
|
||||
assert_equal(poly.polyx, [0, 1])
|
||||
|
||||
|
||||
class TestArithmetic(object):
|
||||
|
||||
def test_polyadd(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] += 1
|
||||
res = poly.polyadd([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_polysub(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(max(i, j) + 1)
|
||||
tgt[i] += 1
|
||||
tgt[j] -= 1
|
||||
res = poly.polysub([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_polymulx(self):
|
||||
assert_equal(poly.polymulx([0]), [0])
|
||||
assert_equal(poly.polymulx([1]), [0, 1])
|
||||
for i in range(1, 5):
|
||||
ser = [0]*i + [1]
|
||||
tgt = [0]*(i + 1) + [1]
|
||||
assert_equal(poly.polymulx(ser), tgt)
|
||||
|
||||
def test_polymul(self):
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
tgt = np.zeros(i + j + 1)
|
||||
tgt[i + j] += 1
|
||||
res = poly.polymul([0]*i + [1], [0]*j + [1])
|
||||
assert_equal(trim(res), trim(tgt), err_msg=msg)
|
||||
|
||||
def test_polydiv(self):
|
||||
# check zero division
|
||||
assert_raises(ZeroDivisionError, poly.polydiv, [1], [0])
|
||||
|
||||
# check scalar division
|
||||
quo, rem = poly.polydiv([2], [2])
|
||||
assert_equal((quo, rem), (1, 0))
|
||||
quo, rem = poly.polydiv([2, 2], [2])
|
||||
assert_equal((quo, rem), ((1, 1), 0))
|
||||
|
||||
# check rest.
|
||||
for i in range(5):
|
||||
for j in range(5):
|
||||
msg = "At i=%d, j=%d" % (i, j)
|
||||
ci = [0]*i + [1, 2]
|
||||
cj = [0]*j + [1, 2]
|
||||
tgt = poly.polyadd(ci, cj)
|
||||
quo, rem = poly.polydiv(tgt, ci)
|
||||
res = poly.polyadd(poly.polymul(quo, ci), rem)
|
||||
assert_equal(res, tgt, err_msg=msg)
|
||||
|
||||
|
||||
class TestEvaluation(object):
|
||||
# coefficients of 1 + 2*x + 3*x**2
|
||||
c1d = np.array([1., 2., 3.])
|
||||
c2d = np.einsum('i,j->ij', c1d, c1d)
|
||||
c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)
|
||||
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
y = poly.polyval(x, [1., 2., 3.])
|
||||
|
||||
def test_polyval(self):
|
||||
#check empty input
|
||||
assert_equal(poly.polyval([], [1]).size, 0)
|
||||
|
||||
#check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [x**i for i in range(5)]
|
||||
for i in range(5):
|
||||
tgt = y[i]
|
||||
res = poly.polyval(x, [0]*i + [1])
|
||||
assert_almost_equal(res, tgt)
|
||||
tgt = x*(x**2 - 1)
|
||||
res = poly.polyval(x, [0, -1, 0, 1])
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(poly.polyval(x, [1]).shape, dims)
|
||||
assert_equal(poly.polyval(x, [1, 0]).shape, dims)
|
||||
assert_equal(poly.polyval(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
def test_polyvalfromroots(self):
|
||||
# check exception for broadcasting x values over root array with
|
||||
# too few dimensions
|
||||
assert_raises(ValueError, poly.polyvalfromroots,
|
||||
[1], [1], tensor=False)
|
||||
|
||||
# check empty input
|
||||
assert_equal(poly.polyvalfromroots([], [1]).size, 0)
|
||||
assert_(poly.polyvalfromroots([], [1]).shape == (0,))
|
||||
|
||||
# check empty input + multidimensional roots
|
||||
assert_equal(poly.polyvalfromroots([], [[1] * 5]).size, 0)
|
||||
assert_(poly.polyvalfromroots([], [[1] * 5]).shape == (5, 0))
|
||||
|
||||
# check scalar input
|
||||
assert_equal(poly.polyvalfromroots(1, 1), 0)
|
||||
assert_(poly.polyvalfromroots(1, np.ones((3, 3))).shape == (3,))
|
||||
|
||||
# check normal input)
|
||||
x = np.linspace(-1, 1)
|
||||
y = [x**i for i in range(5)]
|
||||
for i in range(1, 5):
|
||||
tgt = y[i]
|
||||
res = poly.polyvalfromroots(x, [0]*i)
|
||||
assert_almost_equal(res, tgt)
|
||||
tgt = x*(x - 1)*(x + 1)
|
||||
res = poly.polyvalfromroots(x, [-1, 0, 1])
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check that shape is preserved
|
||||
for i in range(3):
|
||||
dims = [2]*i
|
||||
x = np.zeros(dims)
|
||||
assert_equal(poly.polyvalfromroots(x, [1]).shape, dims)
|
||||
assert_equal(poly.polyvalfromroots(x, [1, 0]).shape, dims)
|
||||
assert_equal(poly.polyvalfromroots(x, [1, 0, 0]).shape, dims)
|
||||
|
||||
# check compatibility with factorization
|
||||
ptest = [15, 2, -16, -2, 1]
|
||||
r = poly.polyroots(ptest)
|
||||
x = np.linspace(-1, 1)
|
||||
assert_almost_equal(poly.polyval(x, ptest),
|
||||
poly.polyvalfromroots(x, r))
|
||||
|
||||
# check multidimensional arrays of roots and values
|
||||
# check tensor=False
|
||||
rshape = (3, 5)
|
||||
x = np.arange(-3, 2)
|
||||
r = np.random.randint(-5, 5, size=rshape)
|
||||
res = poly.polyvalfromroots(x, r, tensor=False)
|
||||
tgt = np.empty(r.shape[1:])
|
||||
for ii in range(tgt.size):
|
||||
tgt[ii] = poly.polyvalfromroots(x[ii], r[:, ii])
|
||||
assert_equal(res, tgt)
|
||||
|
||||
# check tensor=True
|
||||
x = np.vstack([x, 2*x])
|
||||
res = poly.polyvalfromroots(x, r, tensor=True)
|
||||
tgt = np.empty(r.shape[1:] + x.shape)
|
||||
for ii in range(r.shape[1]):
|
||||
for jj in range(x.shape[0]):
|
||||
tgt[ii, jj, :] = poly.polyvalfromroots(x[jj], r[:, ii])
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_polyval2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, poly.polyval2d, x1, x2[:2], self.c2d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2
|
||||
res = poly.polyval2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = poly.polyval2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_polyval3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test exceptions
|
||||
assert_raises(ValueError, poly.polyval3d, x1, x2, x3[:2], self.c3d)
|
||||
|
||||
#test values
|
||||
tgt = y1*y2*y3
|
||||
res = poly.polyval3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = poly.polyval3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3))
|
||||
|
||||
def test_polygrid2d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j->ij', y1, y2)
|
||||
res = poly.polygrid2d(x1, x2, self.c2d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = poly.polygrid2d(z, z, self.c2d)
|
||||
assert_(res.shape == (2, 3)*2)
|
||||
|
||||
def test_polygrid3d(self):
|
||||
x1, x2, x3 = self.x
|
||||
y1, y2, y3 = self.y
|
||||
|
||||
#test values
|
||||
tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
|
||||
res = poly.polygrid3d(x1, x2, x3, self.c3d)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
#test shape
|
||||
z = np.ones((2, 3))
|
||||
res = poly.polygrid3d(z, z, z, self.c3d)
|
||||
assert_(res.shape == (2, 3)*3)
|
||||
|
||||
|
||||
class TestIntegral(object):
|
||||
|
||||
def test_polyint(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, poly.polyint, [0], .5)
|
||||
assert_raises(ValueError, poly.polyint, [0], -1)
|
||||
assert_raises(ValueError, poly.polyint, [0], 1, [0, 0])
|
||||
assert_raises(ValueError, poly.polyint, [0], lbnd=[0])
|
||||
assert_raises(ValueError, poly.polyint, [0], scl=[0])
|
||||
assert_raises(ValueError, poly.polyint, [0], axis=.5)
|
||||
|
||||
# test integration of zero polynomial
|
||||
for i in range(2, 5):
|
||||
k = [0]*(i - 2) + [1]
|
||||
res = poly.polyint([0], m=i, k=k)
|
||||
assert_almost_equal(res, [0, 1])
|
||||
|
||||
# check single integration with integration constant
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [1/scl]
|
||||
res = poly.polyint(pol, m=1, k=[i])
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check single integration with integration constant and lbnd
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
res = poly.polyint(pol, m=1, k=[i], lbnd=-1)
|
||||
assert_almost_equal(poly.polyval(-1, res), i)
|
||||
|
||||
# check single integration with integration constant and scaling
|
||||
for i in range(5):
|
||||
scl = i + 1
|
||||
pol = [0]*i + [1]
|
||||
tgt = [i] + [0]*i + [2/scl]
|
||||
res = poly.polyint(pol, m=1, k=[i], scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with default k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = poly.polyint(tgt, m=1)
|
||||
res = poly.polyint(pol, m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with defined k
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = poly.polyint(tgt, m=1, k=[k])
|
||||
res = poly.polyint(pol, m=j, k=list(range(j)))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with lbnd
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = poly.polyint(tgt, m=1, k=[k], lbnd=-1)
|
||||
res = poly.polyint(pol, m=j, k=list(range(j)), lbnd=-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check multiple integrations with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
pol = [0]*i + [1]
|
||||
tgt = pol[:]
|
||||
for k in range(j):
|
||||
tgt = poly.polyint(tgt, m=1, k=[k], scl=2)
|
||||
res = poly.polyint(pol, m=j, k=list(range(j)), scl=2)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_polyint_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([poly.polyint(c) for c in c2d.T]).T
|
||||
res = poly.polyint(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([poly.polyint(c) for c in c2d])
|
||||
res = poly.polyint(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([poly.polyint(c, k=3) for c in c2d])
|
||||
res = poly.polyint(c2d, k=3, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestDerivative(object):
|
||||
|
||||
def test_polyder(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, poly.polyder, [0], .5)
|
||||
assert_raises(ValueError, poly.polyder, [0], -1)
|
||||
|
||||
# check that zeroth derivative does nothing
|
||||
for i in range(5):
|
||||
tgt = [0]*i + [1]
|
||||
res = poly.polyder(tgt, m=0)
|
||||
assert_equal(trim(res), trim(tgt))
|
||||
|
||||
# check that derivation is the inverse of integration
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = poly.polyder(poly.polyint(tgt, m=j), m=j)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
# check derivation with scaling
|
||||
for i in range(5):
|
||||
for j in range(2, 5):
|
||||
tgt = [0]*i + [1]
|
||||
res = poly.polyder(poly.polyint(tgt, m=j, scl=2), m=j, scl=.5)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_polyder_axis(self):
|
||||
# check that axis keyword works
|
||||
c2d = np.random.random((3, 4))
|
||||
|
||||
tgt = np.vstack([poly.polyder(c) for c in c2d.T]).T
|
||||
res = poly.polyder(c2d, axis=0)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
tgt = np.vstack([poly.polyder(c) for c in c2d])
|
||||
res = poly.polyder(c2d, axis=1)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
class TestVander(object):
|
||||
# some random values in [-1, 1)
|
||||
x = np.random.random((3, 5))*2 - 1
|
||||
|
||||
def test_polyvander(self):
|
||||
# check for 1d x
|
||||
x = np.arange(3)
|
||||
v = poly.polyvander(x, 3)
|
||||
assert_(v.shape == (3, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], poly.polyval(x, coef))
|
||||
|
||||
# check for 2d x
|
||||
x = np.array([[1, 2], [3, 4], [5, 6]])
|
||||
v = poly.polyvander(x, 3)
|
||||
assert_(v.shape == (3, 2, 4))
|
||||
for i in range(4):
|
||||
coef = [0]*i + [1]
|
||||
assert_almost_equal(v[..., i], poly.polyval(x, coef))
|
||||
|
||||
def test_polyvander2d(self):
|
||||
# also tests polyval2d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3))
|
||||
van = poly.polyvander2d(x1, x2, [1, 2])
|
||||
tgt = poly.polyval2d(x1, x2, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = poly.polyvander2d([x1], [x2], [1, 2])
|
||||
assert_(van.shape == (1, 5, 6))
|
||||
|
||||
def test_polyvander3d(self):
|
||||
# also tests polyval3d for non-square coefficient array
|
||||
x1, x2, x3 = self.x
|
||||
c = np.random.random((2, 3, 4))
|
||||
van = poly.polyvander3d(x1, x2, x3, [1, 2, 3])
|
||||
tgt = poly.polyval3d(x1, x2, x3, c)
|
||||
res = np.dot(van, c.flat)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# check shape
|
||||
van = poly.polyvander3d([x1], [x2], [x3], [1, 2, 3])
|
||||
assert_(van.shape == (1, 5, 24))
|
||||
|
||||
|
||||
class TestCompanion(object):
|
||||
|
||||
def test_raises(self):
|
||||
assert_raises(ValueError, poly.polycompanion, [])
|
||||
assert_raises(ValueError, poly.polycompanion, [1])
|
||||
|
||||
def test_dimensions(self):
|
||||
for i in range(1, 5):
|
||||
coef = [0]*i + [1]
|
||||
assert_(poly.polycompanion(coef).shape == (i, i))
|
||||
|
||||
def test_linear_root(self):
|
||||
assert_(poly.polycompanion([1, 2])[0, 0] == -.5)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_polyfromroots(self):
|
||||
res = poly.polyfromroots([])
|
||||
assert_almost_equal(trim(res), [1])
|
||||
for i in range(1, 5):
|
||||
roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
|
||||
tgt = Tlist[i]
|
||||
res = poly.polyfromroots(roots)*2**(i-1)
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_polyroots(self):
|
||||
assert_almost_equal(poly.polyroots([1]), [])
|
||||
assert_almost_equal(poly.polyroots([1, 2]), [-.5])
|
||||
for i in range(2, 5):
|
||||
tgt = np.linspace(-1, 1, i)
|
||||
res = poly.polyroots(poly.polyfromroots(tgt))
|
||||
assert_almost_equal(trim(res), trim(tgt))
|
||||
|
||||
def test_polyfit(self):
|
||||
def f(x):
|
||||
return x*(x - 1)*(x - 2)
|
||||
|
||||
def f2(x):
|
||||
return x**4 + x**2 + 1
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, poly.polyfit, [1], [1], -1)
|
||||
assert_raises(TypeError, poly.polyfit, [[1]], [1], 0)
|
||||
assert_raises(TypeError, poly.polyfit, [], [1], 0)
|
||||
assert_raises(TypeError, poly.polyfit, [1], [[[1]]], 0)
|
||||
assert_raises(TypeError, poly.polyfit, [1, 2], [1], 0)
|
||||
assert_raises(TypeError, poly.polyfit, [1], [1, 2], 0)
|
||||
assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[[1]])
|
||||
assert_raises(TypeError, poly.polyfit, [1], [1], 0, w=[1, 1])
|
||||
assert_raises(ValueError, poly.polyfit, [1], [1], [-1,])
|
||||
assert_raises(ValueError, poly.polyfit, [1], [1], [2, -1, 6])
|
||||
assert_raises(TypeError, poly.polyfit, [1], [1], [])
|
||||
|
||||
# Test fit
|
||||
x = np.linspace(0, 2)
|
||||
y = f(x)
|
||||
#
|
||||
coef3 = poly.polyfit(x, y, 3)
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(poly.polyval(x, coef3), y)
|
||||
coef3 = poly.polyfit(x, y, [0, 1, 2, 3])
|
||||
assert_equal(len(coef3), 4)
|
||||
assert_almost_equal(poly.polyval(x, coef3), y)
|
||||
#
|
||||
coef4 = poly.polyfit(x, y, 4)
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(poly.polyval(x, coef4), y)
|
||||
coef4 = poly.polyfit(x, y, [0, 1, 2, 3, 4])
|
||||
assert_equal(len(coef4), 5)
|
||||
assert_almost_equal(poly.polyval(x, coef4), y)
|
||||
#
|
||||
coef2d = poly.polyfit(x, np.array([y, y]).T, 3)
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
coef2d = poly.polyfit(x, np.array([y, y]).T, [0, 1, 2, 3])
|
||||
assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
|
||||
# test weighting
|
||||
w = np.zeros_like(x)
|
||||
yw = y.copy()
|
||||
w[1::2] = 1
|
||||
yw[0::2] = 0
|
||||
wcoef3 = poly.polyfit(x, yw, 3, w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
wcoef3 = poly.polyfit(x, yw, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef3, coef3)
|
||||
#
|
||||
wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, 3, w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
wcoef2d = poly.polyfit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
|
||||
assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
|
||||
# test scaling with complex values x points whose square
|
||||
# is zero when summed.
|
||||
x = [1, 1j, -1, -1j]
|
||||
assert_almost_equal(poly.polyfit(x, x, 1), [0, 1])
|
||||
assert_almost_equal(poly.polyfit(x, x, [0, 1]), [0, 1])
|
||||
# test fitting only even Polyendre polynomials
|
||||
x = np.linspace(-1, 1)
|
||||
y = f2(x)
|
||||
coef1 = poly.polyfit(x, y, 4)
|
||||
assert_almost_equal(poly.polyval(x, coef1), y)
|
||||
coef2 = poly.polyfit(x, y, [0, 2, 4])
|
||||
assert_almost_equal(poly.polyval(x, coef2), y)
|
||||
assert_almost_equal(coef1, coef2)
|
||||
|
||||
def test_polytrim(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, poly.polytrim, coef, -1)
|
||||
|
||||
# Test results
|
||||
assert_equal(poly.polytrim(coef), coef[:-1])
|
||||
assert_equal(poly.polytrim(coef, 1), coef[:-3])
|
||||
assert_equal(poly.polytrim(coef, 2), [0])
|
||||
|
||||
def test_polyline(self):
|
||||
assert_equal(poly.polyline(3, 4), [3, 4])
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,110 @@
|
||||
"""Tests for polyutils module.
|
||||
|
||||
"""
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy as np
|
||||
import numpy.polynomial.polyutils as pu
|
||||
from numpy.testing import (
|
||||
assert_almost_equal, assert_raises, assert_equal, assert_,
|
||||
run_module_suite
|
||||
)
|
||||
|
||||
|
||||
class TestMisc(object):
|
||||
|
||||
def test_trimseq(self):
|
||||
for i in range(5):
|
||||
tgt = [1]
|
||||
res = pu.trimseq([1] + [0]*5)
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_as_series(self):
|
||||
# check exceptions
|
||||
assert_raises(ValueError, pu.as_series, [[]])
|
||||
assert_raises(ValueError, pu.as_series, [[[1, 2]]])
|
||||
assert_raises(ValueError, pu.as_series, [[1], ['a']])
|
||||
# check common types
|
||||
types = ['i', 'd', 'O']
|
||||
for i in range(len(types)):
|
||||
for j in range(i):
|
||||
ci = np.ones(1, types[i])
|
||||
cj = np.ones(1, types[j])
|
||||
[resi, resj] = pu.as_series([ci, cj])
|
||||
assert_(resi.dtype.char == resj.dtype.char)
|
||||
assert_(resj.dtype.char == types[i])
|
||||
|
||||
def test_trimcoef(self):
|
||||
coef = [2, -1, 1, 0]
|
||||
# Test exceptions
|
||||
assert_raises(ValueError, pu.trimcoef, coef, -1)
|
||||
# Test results
|
||||
assert_equal(pu.trimcoef(coef), coef[:-1])
|
||||
assert_equal(pu.trimcoef(coef, 1), coef[:-3])
|
||||
assert_equal(pu.trimcoef(coef, 2), [0])
|
||||
|
||||
|
||||
class TestDomain(object):
|
||||
|
||||
def test_getdomain(self):
|
||||
# test for real values
|
||||
x = [1, 10, 3, -1]
|
||||
tgt = [-1, 10]
|
||||
res = pu.getdomain(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# test for complex values
|
||||
x = [1 + 1j, 1 - 1j, 0, 2]
|
||||
tgt = [-1j, 2 + 1j]
|
||||
res = pu.getdomain(x)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
def test_mapdomain(self):
|
||||
# test for real values
|
||||
dom1 = [0, 4]
|
||||
dom2 = [1, 3]
|
||||
tgt = dom2
|
||||
res = pu. mapdomain(dom1, dom1, dom2)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# test for complex values
|
||||
dom1 = [0 - 1j, 2 + 1j]
|
||||
dom2 = [-2, 2]
|
||||
tgt = dom2
|
||||
x = dom1
|
||||
res = pu.mapdomain(x, dom1, dom2)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# test for multidimensional arrays
|
||||
dom1 = [0, 4]
|
||||
dom2 = [1, 3]
|
||||
tgt = np.array([dom2, dom2])
|
||||
x = np.array([dom1, dom1])
|
||||
res = pu.mapdomain(x, dom1, dom2)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# test that subtypes are preserved.
|
||||
dom1 = [0, 4]
|
||||
dom2 = [1, 3]
|
||||
x = np.matrix([dom1, dom1])
|
||||
res = pu.mapdomain(x, dom1, dom2)
|
||||
assert_(isinstance(res, np.matrix))
|
||||
|
||||
def test_mapparms(self):
|
||||
# test for real values
|
||||
dom1 = [0, 4]
|
||||
dom2 = [1, 3]
|
||||
tgt = [1, .5]
|
||||
res = pu. mapparms(dom1, dom2)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
# test for complex values
|
||||
dom1 = [0 - 1j, 2 + 1j]
|
||||
dom2 = [-2, 2]
|
||||
tgt = [-1 + 1j, 1 - 1j]
|
||||
res = pu.mapparms(dom1, dom2)
|
||||
assert_almost_equal(res, tgt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
@@ -0,0 +1,74 @@
|
||||
from __future__ import division, absolute_import, print_function
|
||||
|
||||
import numpy.polynomial as poly
|
||||
from numpy.testing import run_module_suite, assert_equal
|
||||
|
||||
|
||||
class TestStr(object):
|
||||
def test_polynomial_str(self):
|
||||
res = str(poly.Polynomial([0, 1]))
|
||||
tgt = 'poly([0. 1.])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_chebyshev_str(self):
|
||||
res = str(poly.Chebyshev([0, 1]))
|
||||
tgt = 'cheb([0. 1.])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_legendre_str(self):
|
||||
res = str(poly.Legendre([0, 1]))
|
||||
tgt = 'leg([0. 1.])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_hermite_str(self):
|
||||
res = str(poly.Hermite([0, 1]))
|
||||
tgt = 'herm([0. 1.])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_hermiteE_str(self):
|
||||
res = str(poly.HermiteE([0, 1]))
|
||||
tgt = 'herme([0. 1.])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_laguerre_str(self):
|
||||
res = str(poly.Laguerre([0, 1]))
|
||||
tgt = 'lag([0. 1.])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
|
||||
class TestRepr(object):
|
||||
def test_polynomial_str(self):
|
||||
res = repr(poly.Polynomial([0, 1]))
|
||||
tgt = 'Polynomial([0., 1.], domain=[-1, 1], window=[-1, 1])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_chebyshev_str(self):
|
||||
res = repr(poly.Chebyshev([0, 1]))
|
||||
tgt = 'Chebyshev([0., 1.], domain=[-1, 1], window=[-1, 1])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_legendre_repr(self):
|
||||
res = repr(poly.Legendre([0, 1]))
|
||||
tgt = 'Legendre([0., 1.], domain=[-1, 1], window=[-1, 1])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_hermite_repr(self):
|
||||
res = repr(poly.Hermite([0, 1]))
|
||||
tgt = 'Hermite([0., 1.], domain=[-1, 1], window=[-1, 1])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_hermiteE_repr(self):
|
||||
res = repr(poly.HermiteE([0, 1]))
|
||||
tgt = 'HermiteE([0., 1.], domain=[-1, 1], window=[-1, 1])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
def test_laguerre_repr(self):
|
||||
res = repr(poly.Laguerre([0, 1]))
|
||||
tgt = 'Laguerre([0., 1.], domain=[0, 1], window=[0, 1])'
|
||||
assert_equal(res, tgt)
|
||||
|
||||
|
||||
#
|
||||
|
||||
if __name__ == "__main__":
|
||||
run_module_suite()
|
Reference in New Issue
Block a user