#----------------------------------------------------------------------------- # Name: MidiFile.py # Purpose: MIDI file manipulation utilities # # Author: Mark Conway Wirt # # Created: 2008/04/17 # Copyright: (c) 2009 Mark Conway Wirt # License: Please see License.txt for the terms under which this # software is distributed. #----------------------------------------------------------------------------- import struct, sys, math # TICKSPERBEAT is the number of "ticks" (time measurement in the MIDI file) that # corresponds to one beat. This number is somewhat arbitrary, but should be chosen # to provide adequate temporal resolution. TICKSPERBEAT = 960 controllerEventTypes = { 'pan' : 0x0a } class MIDIEvent: ''' The class to contain the MIDI Event (placed on MIDIEventList. ''' def __init__(self): self.type='unknown' self.time=0 self.ord = 0 def __lt__(self, other): ''' Sorting function for events.''' if self.time < other.time: return True elif self.time > other.time: return False else: if self.ord < other.ord: return True elif self.ord > other.ord: return False else: return False def __cmp__(self, other): ''' Sorting function for events.''' if self.time < other.time: return -1 elif self.time > other.time: return 1 else: if self.ord < other.ord: return -1 elif self.ord > other.ord: return 1 else: return 0 class GenericEvent(): '''The event class from which specific events are derived ''' def __init__(self,time): self.time = time self.type = 'Unknown' def __eq__(self, other): ''' Equality operator for Generic Events and derived classes. In the processing of the event list, we have need to remove duplicates. To do this we rely on the fact that the classes are hashable, and must therefore have an equality operator (__hash__() and __eq__() must both be defined). This is the most embarrassing portion of the code, and anyone who knows about OO programming would find this almost unbelievable. Here we have a base class that knows specifics about derived classes, thus breaking the very spirit of OO programming. I suppose I should go back and restructure the code, perhaps removing the derived classes altogether. At some point perhaps I will. ''' if self.time != other.time or self.type != other.type: return False # What follows is code that encodes the concept of equality for each derived # class. Believe it f you dare. if self.type == 'note': if self.pitch != other.pitch or self.channel != other.channel: return False if self.type == 'tempo': if self.tempo != other.tempo: return False if self.type == 'programChange': if self.programNumber != other.programNumber or self.channel != other.channel: return False if self.type == 'trackName': if self.trackName != other.trackName: return False if self.type == 'controllerEvent': if self.parameter1 != other.parameter1 or \ self.channel != other.channel or \ self.eventType != other.eventType: return False if self.type == 'SysEx': if self.manID != other.manID: return False if self.type == 'UniversalSysEx': if self.code != other.code or\ self.subcode != other.subcode or \ self.sysExChannel != other.sysExChannel: return False return True def __hash__(self): ''' Return a hash code for the object. This is needed for the removal of duplicate objects from the event list. The only real requirement for the algorithm is that the hash of equal objects must be equal. There is probably great opportunity for improvements in the hashing function. ''' # Robert Jenkin's 32 bit hash. a = int(self.time) a = (a+0x7ed55d16) + (a<<12) a = (a^0xc761c23c) ^ (a>>19) a = (a+0x165667b1) + (a<<5) a = (a+0xd3a2646c) ^ (a<<9) a = (a+0xfd7046c5) + (a<<3) a = (a^0xb55a4f09) ^ (a>>16) return a class MIDITrack: '''A class that encapsulates a MIDI track ''' # Nested class definitions. class note(GenericEvent): '''A class that encapsulates a note ''' def __init__(self,channel, pitch,time,duration,volume): GenericEvent.__init__(self,time) self.pitch = pitch self.duration = duration self.volume = volume self.type = 'note' self.channel = channel def compare(self, other): '''Compare two notes for equality. ''' if self.pitch == other.pitch and \ self.time == other.time and \ self.duration == other.duration and \ self.volume == other.volume and \ self.type == other.type and \ self.channel == other.channel: return True else: return False class tempo(GenericEvent): '''A class that encapsulates a tempo meta-event ''' def __init__(self,time,tempo): GenericEvent.__init__(self,time) self.type = 'tempo' self.tempo = int(60000000 / tempo) class programChange(GenericEvent): '''A class that encapsulates a program change event. ''' def __init__(self, channel, time, programNumber): GenericEvent.__init__(self, time,) self.type = 'programChange' self.programNumber = programNumber self.channel = channel class SysExEvent(GenericEvent): '''A class that encapsulates a System Exclusive event. ''' def __init__(self, time, manID, payload): GenericEvent.__init__(self, time,) self.type = 'SysEx' self.manID = manID self.payload = payload class UniversalSysExEvent(GenericEvent): '''A class that encapsulates a Universal System Exclusive event. ''' def __init__(self, time, realTime, sysExChannel, code, subcode, payload): GenericEvent.__init__(self, time,) self.type = 'UniversalSysEx' self.realTime = realTime self.sysExChannel = sysExChannel self.code = code self.subcode = subcode self.payload = payload class ControllerEvent(GenericEvent): '''A class that encapsulates a program change event. ''' def __init__(self, channel, time, eventType, parameter1,): GenericEvent.__init__(self, time,) self.type = 'controllerEvent' self.parameter1 = parameter1 self.channel = channel self.eventType = eventType class trackName(GenericEvent): '''A class that encapsulates a program change event. ''' def __init__(self, time, trackName): GenericEvent.__init__(self, time,) self.type = 'trackName' self.trackName = trackName def __init__(self, removeDuplicates, deinterleave): '''Initialize the MIDITrack object. ''' self.headerString = struct.pack('cccc',b'M',b'T',b'r',b'k') self.dataLength = 0 # Is calculated after the data is in place self.MIDIdata = b"" self.closed = False self.eventList = [] self.MIDIEventList = [] self.remdep = removeDuplicates self.deinterleave = deinterleave def addNoteByNumber(self,channel, pitch,time,duration,volume): '''Add a note by chromatic MIDI number ''' self.eventList.append(MIDITrack.note(channel, pitch,time,duration,volume)) def addControllerEvent(self,channel,time,eventType, paramerter1): ''' Add a controller event. ''' self.eventList.append(MIDITrack.ControllerEvent(channel,time,eventType, \ paramerter1)) def addTempo(self,time,tempo): ''' Add a tempo change (or set) event. ''' self.eventList.append(MIDITrack.tempo(time,tempo)) def addSysEx(self,time,manID, payload): ''' Add a SysEx event. ''' self.eventList.append(MIDITrack.SysExEvent(time, manID, payload)) def addUniversalSysEx(self,time,code, subcode, payload, sysExChannel=0x7F, \ realTime=False): ''' Add a Universal SysEx event. ''' self.eventList.append(MIDITrack.UniversalSysExEvent(time, realTime, \ sysExChannel, code, subcode, payload)) def addProgramChange(self,channel, time, program): ''' Add a program change event. ''' self.eventList.append(MIDITrack.programChange(channel, time, program)) def addTrackName(self,time,trackName): ''' Add a track name event. ''' self.eventList.append(MIDITrack.trackName(time,trackName)) def changeNoteTuning(self, tunings, sysExChannel=0x7F, realTime=False, \ tuningProgam=0): '''Change the tuning of MIDI notes ''' payload = struct.pack('>B', tuningProgam) payload = payload + struct.pack('>B', len(tunings)) for (noteNumber, frequency) in tunings: payload = payload + struct.pack('>B', noteNumber) MIDIFreqency = frequencyTransform(frequency) for byte in MIDIFreqency: payload = payload + struct.pack('>B', byte) self.eventList.append(MIDITrack.UniversalSysExEvent(0, realTime, sysExChannel,\ 8, 2, payload)) def processEventList(self): ''' Process the event list, creating a MIDIEventList For each item in the event list, one or more events in the MIDIEvent list are created. ''' # Loop over all items in the eventList for thing in self.eventList: if thing.type == 'note': event = MIDIEvent() event.type = "NoteOn" event.time = thing.time * TICKSPERBEAT event.pitch = thing.pitch event.volume = thing.volume event.channel = thing.channel event.ord = 3 self.MIDIEventList.append(event) event = MIDIEvent() event.type = "NoteOff" event.time = (thing.time + thing.duration) * TICKSPERBEAT event.pitch = thing.pitch event.volume = thing.volume event.channel = thing.channel event.ord = 2 self.MIDIEventList.append(event) elif thing.type == 'tempo': event = MIDIEvent() event.type = "Tempo" event.time = thing.time * TICKSPERBEAT event.tempo = thing.tempo event.ord = 3 self.MIDIEventList.append(event) elif thing.type == 'programChange': event = MIDIEvent() event.type = "ProgramChange" event.time = thing.time * TICKSPERBEAT event.programNumber = thing.programNumber event.channel = thing.channel event.ord = 1 self.MIDIEventList.append(event) elif thing.type == 'trackName': event = MIDIEvent() event.type = "TrackName" event.time = thing.time * TICKSPERBEAT event.trackName = thing.trackName event.ord = 0 self.MIDIEventList.append(event) elif thing.type == 'controllerEvent': event = MIDIEvent() event.type = "ControllerEvent" event.time = thing.time * TICKSPERBEAT event.eventType = thing.eventType event.channel = thing.channel event.paramerter1 = thing.parameter1 event.ord = 1 self.MIDIEventList.append(event) elif thing.type == 'SysEx': event = MIDIEvent() event.type = "SysEx" event.time = thing.time * TICKSPERBEAT event.manID = thing.manID event.payload = thing.payload event.ord = 1 self.MIDIEventList.append(event) elif thing.type == 'UniversalSysEx': event = MIDIEvent() event.type = "UniversalSysEx" event.realTime = thing.realTime event.sysExChannel = thing.sysExChannel event.time = thing.time * TICKSPERBEAT event.code = thing.code event.subcode = thing.subcode event.payload = thing.payload event.ord = 1 self.MIDIEventList.append(event) else: print ("Error in MIDITrack: Unknown event type") sys.exit(2) # Assumptions in the code expect the list to be time-sorted. # self.MIDIEventList.sort(lambda x, y: x.time - y.time) self.MIDIEventList.sort(key=lambda x: (x.time)) if self.deinterleave: self.deInterleaveNotes() def removeDuplicates(self): ''' Remove duplicates from the eventList. This function will remove duplicates from the eventList. This is necessary because we the MIDI event stream can become confused otherwise. ''' # For this algorithm to work, the events in the eventList must be hashable # (that is, they must have a __hash__() and __eq__() function defined). tempDict = {} for item in self.eventList: tempDict[item] = 1 self.eventList = list(tempDict.keys()) # Sort on type, them on time. Necessary because keys() has no requirement to return # things in any order. self.eventList.sort(key=lambda x: (x.type)) self.eventList.sort(key=lambda x: (x.time)) #A bit of a hack. def closeTrack(self): '''Called to close a track before writing This function should be called to "close a track," that is to prepare the actual data stream for writing. Duplicate events are removed from the eventList, and the MIDIEventList is created. Called by the parent MIDIFile object. ''' if self.closed == True: return self.closed = True if self.remdep: self.removeDuplicates() self.processEventList() def writeMIDIStream(self): ''' Write the meta data and note data to the packed MIDI stream. ''' #Process the events in the eventList self.writeEventsToStream() # Write MIDI close event. self.MIDIdata = self.MIDIdata + struct.pack('BBBB',0x00,0xFF, \ 0x2F,0x00) # Calculate the entire length of the data and write to the header self.dataLength = struct.pack('>L',len(self.MIDIdata)) def writeEventsToStream(self): ''' Write the events in MIDIEvents to the MIDI stream. ''' preciseTime = 0.0 # Actual time of event, ignoring round-off actualTime = 0.0 # Time as written to midi stream, include round-off for event in self.MIDIEventList: preciseTime = preciseTime + event.time # Convert the time to variable length and back, to see how much # error is introduced testBuffer = bytes() varTime = writeVarLength(event.time) for timeByte in varTime: testBuffer = testBuffer + struct.pack('>B',timeByte) (roundedVal,discard) = readVarLength(0,testBuffer) roundedTime = actualTime + roundedVal # print "Rounded, Precise: %15.10f %15.10f" % (roundedTime, preciseTime) # Calculate the delta between the two and apply it to the event time. delta = preciseTime - roundedTime event.time = event.time + delta # Now update the actualTime value, using the updated event time. testBuffer = bytes() varTime = writeVarLength(event.time) for timeByte in varTime: testBuffer = testBuffer + struct.pack('>B',timeByte) (roundedVal,discard) = readVarLength(0,testBuffer) actualTime = actualTime + roundedVal for event in self.MIDIEventList: if event.type == "NoteOn": code = 0x9 << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.pitch) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.volume) elif event.type == "NoteOff": code = 0x8 << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.pitch) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.volume) elif event.type == "Tempo": code = 0xFF subcode = 0x51 fourbite = struct.pack('>L', event.tempo) threebite = fourbite[1:4] # Just discard the MSB varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',subcode) self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x03) # Data length: 3 self.MIDIdata = self.MIDIdata + threebite elif event.type == 'ProgramChange': code = 0xC << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.programNumber) elif event.type == 'TrackName': varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('B',0xFF) # Meta-event self.MIDIdata = self.MIDIdata + struct.pack('B',0X03) # Event Type dataLength = len(event.trackName) dataLenghtVar = writeVarLength(dataLength) for i in range(0,len(dataLenghtVar)): self.MIDIdata = self.MIDIdata + struct.pack("b",dataLenghtVar[i]) self.MIDIdata = self.MIDIdata + event.trackName.encode() elif event.type == "ControllerEvent": code = 0xB << 4 | event.channel varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B',code) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.eventType) self.MIDIdata = self.MIDIdata + struct.pack('>B',event.paramerter1) elif event.type == "SysEx": code = 0xF0 varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B', code) payloadLength = writeVarLength(len(event.payload)+2) for lenByte in payloadLength: self.MIDIdata = self.MIDIdata + struct.pack('>B',lenByte) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.manID) self.MIDIdata = self.MIDIdata + event.payload self.MIDIdata = self.MIDIdata + struct.pack('>B',0xF7) elif event.type == "UniversalSysEx": code = 0xF0 varTime = writeVarLength(event.time) for timeByte in varTime: self.MIDIdata = self.MIDIdata + struct.pack('>B',timeByte) self.MIDIdata = self.MIDIdata + struct.pack('>B', code) # Do we need to add a length? payloadLength = writeVarLength(len(event.payload)+5) for lenByte in payloadLength: self.MIDIdata = self.MIDIdata + struct.pack('>B',lenByte) if event.realTime : self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x7F) else: self.MIDIdata = self.MIDIdata + struct.pack('>B', 0x7E) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.sysExChannel) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.code) self.MIDIdata = self.MIDIdata + struct.pack('>B', event.subcode) self.MIDIdata = self.MIDIdata + event.payload self.MIDIdata = self.MIDIdata + struct.pack('>B',0xF7) def deInterleaveNotes(self): '''Correct Interleaved notes. Because we are writing multiple notes in no particular order, we can have notes which are interleaved with respect to their start and stop times. This method will correct that. It expects that the MIDIEventList has been time-ordered. ''' tempEventList = [] stack = {} for event in self.MIDIEventList: if event.type == 'NoteOn': if str(event.pitch)+str(event.channel) in stack: stack[str(event.pitch)+str(event.channel)].append(event.time) else: stack[str(event.pitch)+str(event.channel)] = [event.time] tempEventList.append(event) elif event.type == 'NoteOff': if len(stack[str(event.pitch)+str(event.channel)]) > 1: event.time = stack[str(event.pitch)+str(event.channel)].pop() tempEventList.append(event) else: stack[str(event.pitch)+str(event.channel)].pop() tempEventList.append(event) else: tempEventList.append(event) self.MIDIEventList = tempEventList # A little trickery here. We want to make sure that NoteOff events appear # before NoteOn events, so we'll do two sorts -- on on type, one on time. # This may have to be revisited, as it makes assumptions about how # the internal sort works, and is in essence creating a sort on a primary # and secondary key. self.MIDIEventList.sort(key=lambda x: (x.type)) self.MIDIEventList.sort(key=lambda x: (x.time)) def adjustTime(self,origin): ''' Adjust Times to be relative, and zero-origined ''' if len(self.MIDIEventList) == 0: return tempEventList = [] runningTime = 0 for event in self.MIDIEventList: adjustedTime = event.time - origin event.time = adjustedTime - runningTime runningTime = adjustedTime tempEventList.append(event) self.MIDIEventList = tempEventList def writeTrack(self,fileHandle): ''' Write track to disk. ''' if not self.closed: self.closeTrack() fileHandle.write(self.headerString) fileHandle.write(self.dataLength) fileHandle.write(self.MIDIdata) class MIDIHeader: ''' Class to encapsulate the MIDI header structure. This class encapsulates a MIDI header structure. It isn't used for much, but it will create the appropriately packed identifier string that all MIDI files should contain. It is used by the MIDIFile class to create a complete and well formed MIDI pattern. ''' def __init__(self,numTracks): ''' Initialize the data structures ''' self.headerString = struct.pack('cccc',b'M',b'T',b'h',b'd') self.headerSize = struct.pack('>L',6) # Format 1 = multi-track file self.format = struct.pack('>H',1) self.numTracks = struct.pack('>H',numTracks) self.ticksPerBeat = struct.pack('>H',TICKSPERBEAT) def writeFile(self,fileHandle): fileHandle.write(self.headerString) fileHandle.write(self.headerSize) fileHandle.write(self.format) fileHandle.write(self.numTracks) fileHandle.write(self.ticksPerBeat) class MIDIFile: '''Class that represents a full, well-formed MIDI pattern. This is a container object that contains a header, one or more tracks, and the data associated with a proper and well-formed MIDI pattern. Calling: MyMIDI = MidiFile(tracks, removeDuplicates=True, deinterleave=True) normally MyMIDI = MidiFile(tracks) Arguments: tracks: The number of tracks this object contains removeDuplicates: If true (the default), the software will remove duplicate events which have been added. For example, two notes at the same channel, time, pitch, and duration would be considered duplicate. deinterleave: If True (the default), overlapping notes (same pitch, same channel) will be modified so that they do not overlap. Otherwise the sequencing software will need to figure out how to interpret NoteOff events upon playback. ''' def __init__(self, numTracks, removeDuplicates=True, deinterleave=True): ''' Initialize the class ''' self.header = MIDIHeader(numTracks) self.tracks = list() self.numTracks = numTracks self.closed = False for i in range(0,numTracks): self.tracks.append(MIDITrack(removeDuplicates, deinterleave)) # Public Functions. These (for the most part) wrap the MIDITrack functions, where most # Processing takes place. def addNote(self,track, channel, pitch,time,duration,volume): """ Add notes to the MIDIFile object Use: MyMIDI.addNotes(track,channel,pitch,time, duration, volume) Arguments: track: The track to which the note is added. channel: the MIDI channel to assign to the note. [Integer, 0-15] pitch: the MIDI pitch number [Integer, 0-127]. time: the time (in beats) at which the note sounds [Float]. duration: the duration of the note (in beats) [Float]. volume: the volume (velocity) of the note. [Integer, 0-127]. """ self.tracks[track].addNoteByNumber(channel, pitch, time, duration, volume) def addTrackName(self,track, time,trackName): """ Add a track name to a MIDI track. Use: MyMIDI.addTrackName(track,time,trackName) Argument: track: The track to which the name is added. [Integer, 0-127]. time: The time at which the track name is added, in beats [Float]. trackName: The track name. [String]. """ self.tracks[track].addTrackName(time,trackName) def addTempo(self,track, time,tempo): """ Add a tempo event. Use: MyMIDI.addTempo(track, time, tempo) Arguments: track: The track to which the event is added. [Integer, 0-127]. time: The time at which the event is added, in beats. [Float]. tempo: The tempo, in Beats per Minute. [Integer] """ self.tracks[track].addTempo(time,tempo) def addProgramChange(self,track, channel, time, program): """ Add a MIDI program change event. Use: MyMIDI.addProgramChange(track,channel, time, program) Arguments: track: The track to which the event is added. [Integer, 0-127]. channel: The channel the event is assigned to. [Integer, 0-15]. time: The time at which the event is added, in beats. [Float]. program: the program number. [Integer, 0-127]. """ self.tracks[track].addProgramChange(channel, time, program) def addControllerEvent(self,track, channel,time,eventType, paramerter1): """ Add a MIDI controller event. Use: MyMIDI.addControllerEvent(track, channel, time, eventType, parameter1) Arguments: track: The track to which the event is added. [Integer, 0-127]. channel: The channel the event is assigned to. [Integer, 0-15]. time: The time at which the event is added, in beats. [Float]. eventType: the controller event type. parameter1: The event's parameter. The meaning of which varies by event type. """ self.tracks[track].addControllerEvent(channel,time,eventType, paramerter1) def changeNoteTuning(self, track, tunings, sysExChannel=0x7F, \ realTime=False, tuningProgam=0): """ Change a note's tuning using SysEx change tuning program. Use: MyMIDI.changeNoteTuning(track,[tunings],realTime=False, tuningProgram=0) Arguments: track: The track to which the event is added. [Integer, 0-127]. tunings: A list of tuples in the form (pitchNumber, frequency). [[(Integer,Float]] realTime: Boolean which sets the real-time flag. Defaults to false. sysExChannel: do note use (see below). tuningProgram: Tuning program to assign. Defaults to zero. [Integer, 0-127] In general the sysExChannel should not be changed (parameter will be depreciated). Also note that many software packages and hardware packages do not implement this standard! """ self.tracks[track].changeNoteTuning(tunings, sysExChannel, realTime,\ tuningProgam) def writeFile(self,fileHandle): ''' Write the MIDI File. Use: MyMIDI.writeFile(filehandle) Arguments: filehandle: a file handle that has been opened for binary writing. ''' self.header.writeFile(fileHandle) #Close the tracks and have them create the MIDI event data structures. self.close() #Write the MIDI Events to file. for i in range(0,self.numTracks): self.tracks[i].writeTrack(fileHandle) def addSysEx(self,track, time, manID, payload): """ Add a SysEx event Use: MyMIDI.addSysEx(track,time,ID,payload) Arguments: track: The track to which the event is added. [Integer, 0-127]. time: The time at which the event is added, in beats. [Float]. ID: The SysEx ID number payload: the event payload. Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recommended that higher-level helper functions be written to wrap this function and construct the payload if a developer finds him or herself using the function heavily. """ self.tracks[track].addSysEx(time,manID, payload) def addUniversalSysEx(self,track, time,code, subcode, payload, \ sysExChannel=0x7F, realTime=False): """ Add a Universal SysEx event. Use: MyMIDI.addUniversalSysEx(track, time, code, subcode, payload,\ sysExChannel=0x7f, realTime=False) Arguments: track: The track to which the event is added. [Integer, 0-127]. time: The time at which the event is added, in beats. [Float]. code: The even code. [Integer] subcode The event sub-code [Integer] payload: The event payload. [Binary string] sysExChannel: The SysEx channel. realTime: Sets the real-time flag. Defaults to zero. Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recommended that higher-level helper functions be written to wrap this function and construct the payload if a developer finds him or herself using the function heavily. As an example of such a helper function, see the changeNoteTuning function, both here and in MIDITrack. """ self.tracks[track].addUniversalSysEx(time,code, subcode, payload, sysExChannel,\ realTime) def shiftTracks(self, offset=0): """Shift tracks to be zero-origined, or origined at offset. Note that the shifting of the time in the tracks uses the MIDIEventList -- in other words it is assumed to be called in the stage where the MIDIEventList has been created. This function, however, it meant to operate on the eventList itself. """ origin = 1000000 # A little silly, but we'll assume big enough for track in self.tracks: if len(track.eventList) > 0: for event in track.eventList: if event.time < origin: origin = event.time for track in self.tracks: tempEventList = [] #runningTime = 0 for event in track.eventList: adjustedTime = event.time - origin #event.time = adjustedTime - runningTime + offset event.time = adjustedTime + offset #runningTime = adjustedTime tempEventList.append(event) track.eventList = tempEventList #End Public Functions ######################## def close(self): '''Close the MIDIFile for further writing. To close the File for events, we must close the tracks, adjust the time to be zero-origined, and have the tracks write to their MIDI Stream data structure. ''' if self.closed == True: return for i in range(0,self.numTracks): self.tracks[i].closeTrack() # We want things like program changes to come before notes when they are at the # same time, so we sort the MIDI events by their ordinality self.tracks[i].MIDIEventList.sort() origin = self.findOrigin() for i in range(0,self.numTracks): self.tracks[i].adjustTime(origin) self.tracks[i].writeMIDIStream() self.closed = True def findOrigin(self): '''Find the earliest time in the file's tracks.append. ''' origin = 1000000 # A little silly, but we'll assume big enough # Note: This code assumes that the MIDIEventList has been sorted, so this should be insured # before it is called. It is probably a poor design to do this. # TODO: -- Consider making this less efficient but more robust by not assuming the list to be sorted. for track in self.tracks: if len(track.MIDIEventList) > 0: if track.MIDIEventList[0].time < origin: origin = track.MIDIEventList[0].time return origin def writeVarLength(i): '''Accept an input, and write a MIDI-compatible variable length stream The MIDI format is a little strange, and makes use of so-called variable length quantities. These quantities are a stream of bytes. If the most significant bit is 1, then more bytes follow. If it is zero, then the byte in question is the last in the stream ''' input = int(i+0.5) output = [0,0,0,0] reversed = [0,0,0,0] count = 0 result = input & 0x7F output[count] = result count = count + 1 input = input >> 7 while input > 0: result = input & 0x7F result = result | 0x80 output[count] = result count = count + 1 input = input >> 7 reversed[0] = output[3] reversed[1] = output[2] reversed[2] = output[1] reversed[3] = output[0] return reversed[4-count:4] def readVarLength(offset, buffer): '''A function to read a MIDI variable length variable. It returns a tuple of the value read and the number of bytes processed. The input is an offset into the buffer, and the buffer itself. ''' toffset = offset output = 0 bytesRead = 0 while True: output = output << 7 byte = struct.unpack_from('>B',buffer,toffset)[0] toffset = toffset + 1 bytesRead = bytesRead + 1 output = output + (byte & 127) if (byte & 128) == 0: break return (output, bytesRead) def frequencyTransform(freq): '''Returns a three-byte transform of a frequencyTransform ''' resolution = 16384 freq = float(freq) dollars = 69 + 12 * math.log(freq/(float(440)), 2) firstByte = int(dollars) lowerFreq = 440 * pow(2.0, ((float(firstByte) - 69.0)/12.0)) if freq != lowerFreq: centDif = 1200 * math.log( (freq/lowerFreq), 2) else: centDif = 0 cents = round(centDif/100 * resolution) # round? secondByte = min([int(cents)>>7, 0x7F]) thirdByte = cents - (secondByte << 7) thirdByte = min([thirdByte, 0x7f]) if thirdByte == 0x7f and secondByte == 0x7F and firstByte == 0x7F: thirdByte = 0x7e thirdByte = int(thirdByte) return [firstByte, secondByte, thirdByte] def returnFrequency(freqBytes): '''The reverse of frequencyTransform. Given a byte stream, return a frequency. ''' resolution = 16384.0 baseFrequency = 440 * pow(2.0, (float(freqBytes[0]-69.0)/12.0)) frac = (float((int(freqBytes[1]) << 7) + int(freqBytes[2])) * 100.0) / resolution frequency = baseFrequency * pow(2.0, frac/1200.0) return frequency