maybe build on pc?

This commit is contained in:
2023-01-23 12:09:25 +01:00
parent 71f9f686b9
commit 0fc6e95865
5 changed files with 155 additions and 14 deletions

1
.gitignore vendored
View File

@@ -2,6 +2,7 @@
# will have compiled files and executables
main/target/
data_prep/target/
finalise_from_context/target/
# Remove Cargo.lock from gitignore if creating an executable, leave it for libraries
# More information here https://doc.rust-lang.org/cargo/guide/cargo-toml-vs-cargo-lock.html

View File

@@ -0,0 +1,12 @@
[package]
name = "unnamed_chatgpt_project"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
serde = { version = "1.0", features = ["derive"] }
serde_json = "1.0.91"
rfd = "0.10.0"
rust-bert = "0.20.0"

View File

@@ -0,0 +1,12 @@
<?xml version="1.0" encoding="UTF-8"?>
<module type="RUST_MODULE" version="4">
<component name="NewModuleRootManager" inherit-compiler-output="true">
<exclude-output />
<content url="file://$MODULE_DIR$">
<sourceFolder url="file://$MODULE_DIR$/src" isTestSource="false" />
<excludeFolder url="file://$MODULE_DIR$/target" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" />
</component>
</module>

View File

@@ -0,0 +1,98 @@
use std::fs::File;
use std::io;
use std::io::{BufReader, Read, Write};
use serde::{Serialize, Deserialize};
use rust_bert::bert::{BertConfigResources, BertModelResources, BertVocabResources};
use rust_bert::pipelines::common::ModelType;
use rust_bert::pipelines::question_answering::Answer;
use rust_bert::pipelines::question_answering::{
QaInput, QuestionAnsweringConfig, QuestionAnsweringModel,
};
use rust_bert::resources::RemoteResource;
#[derive(Deserialize, Serialize)]
struct Human {
firstName: String,
lastName: String,
gender: String,
age: String,
country: String,
job: String,
bio: String,
}
fn main() {
//load in the file with bio's and names
let current_path = std::env::current_dir().unwrap();
let res = rfd::FileDialog::new().set_directory(&current_path).pick_file().unwrap();
let mut file = File::open(res.as_path()).unwrap();
let mut json_string:String = String::new();
file.read_to_string(&mut json_string).unwrap();
let mut Humans: Vec<Human> = serde_json::from_str(&json_string).unwrap();
//prep final file
let save_res = rfd::FileDialog::new().set_directory(&current_path).save_file().unwrap();
let mut i = 0;
let mut l = &Humans.len().clone();
println!("there are {} humans to process", l - i);
for mut human in &mut Humans {
let (gender, age, country, job) = getHumanFromContext(human.bio.clone(), human.firstName.clone());
human.gender = gender;
human.age = age;
human.country = country;
human.job = job;
println!("just did {} at index {}", human.firstName.clone(), i);
println!("There are {} humans left to process", l - i);
i = i+1;
}
let serialized: String = serde_json::to_string(&Humans).unwrap();
let mut file = File::create(save_res.as_path()).unwrap();
file.write_all(serialized.as_bytes()).expect("oopsie");
}
fn getHumanFromContext(context: String, firstName: String) -> (String, String, String, String) {
//TODO use the other ai to get answers from a given context
let bertconfig = QuestionAnsweringConfig::new(
ModelType::Bert,
RemoteResource::from_pretrained(BertModelResources::BERT_QA),
RemoteResource::from_pretrained(BertConfigResources::BERT_QA),
RemoteResource::from_pretrained(BertVocabResources::BERT_QA),
None, //merges resource only relevant with ModelType::Roberta
false,
false,
None,
);
let mut model = QuestionAnsweringModel::new(bertconfig).unwrap();
let mut genderQuestion = QaInput {
question: format!("What is {}'s gender?", firstName),
context: context.clone()
};
let mut ageQuestion = QaInput {
question: format!("What is {}'s age?", firstName),
context: context.clone()
};
let mut countryQuestion = QaInput {
question: format!("Where does {} live?", firstName),
context: context.clone()
};
let mut jobQuestion = QaInput {
question: format!("What is {}'s job?", firstName),
context: context.clone()
};
let mut answers = model.predict(&[genderQuestion, ageQuestion, countryQuestion, jobQuestion], 1, 32);
let mut looper = answers.iter();
let mut gender = looper.next().unwrap().first().unwrap().answer.clone();
let mut age = looper.next().unwrap().first().unwrap().answer.clone();
let mut country= looper.next().unwrap().first().unwrap().answer.clone();
let mut job = looper.next().unwrap().first().unwrap().answer.clone();
return (gender, age, country, job)
}

View File

@@ -5,7 +5,9 @@ use std::io::{BufReader, Read, Write};
use async_openai::{Client, types::{CreateCompletionRequestArgs}};
use serde::{Serialize, Deserialize};
use rand::Rng;
use rust_bert::roberta::RobertaForQuestionAnswering;
#[derive(Deserialize)]
struct MiniHuman {
@@ -25,6 +27,8 @@ struct Human {
#[tokio::main]
async fn main() {
let current_path = std::env::current_dir().unwrap();
let res = rfd::FileDialog::new().set_directory(&current_path).pick_file().unwrap();
let mut file = File::open(res.as_path()).unwrap();
@@ -35,6 +39,7 @@ async fn main() {
let save_res = rfd::FileDialog::new().set_directory(&current_path).save_file().unwrap();
let mut client = Client::new();
while MiniHumans.len() > 1 {
println!("still got {} to go", MiniHumans.len());
let (mut firstName, mut firstGender) = getRngName(&mut MiniHumans);
let (mut lastName, mut lastGender) = getRngName(&mut MiniHumans);
if firstName == "" || lastName == "" || (firstGender == "" && lastGender == "") { continue }
@@ -45,7 +50,6 @@ async fn main() {
Ok(h) => Humans.push(h),
Err(e) => println!("some err occured: {:?}", e.to_string()),
};
break;
}
let serialized: String = serde_json::to_string(&Humans).unwrap();
let mut file = File::create(save_res.as_path()).unwrap();
@@ -73,8 +77,12 @@ async fn getHuman(client: &mut Client, firstName: String, lastName: String, gend
let res = client.completions().create(request).await;
let response = String::from(format!("{}", res?.choices.first().unwrap().text));
let (finalGender, age, country, job) = getHumanFromContext(response.clone());
//let (finalGender, age, country, job) = getHumanFromContext(response.clone(), firstName.clone());
//NOTE rust bert won't function async, reading these in in a final rust project instead of fucking around with mixing stuff that has huge warning signs when running in async and async programming
let finalGender = "".to_string();
let age = "".to_string();
let country = "".to_string();
let job = "".to_string();
return Ok(Human{
firstName: firstName,
lastName: lastName,
@@ -86,13 +94,23 @@ async fn getHuman(client: &mut Client, firstName: String, lastName: String, gend
});
}
//returns in order: gender, age, country, job
fn getHumanFromContext(context: String, firstName: String) -> (String, String, String, String) {
//TODO use the other ai to get answers from a given context
let qa_model = QuestionAnsweringModel::new(Default::default())?;
let gender = String::from(format!("What is {}'s gender?", firstname));
let age = String::from(format!("What is {}'s age?", firstName));
let country= String::from(format!("Where does {} live?", firstName));
let job = String::from(format!("What is {}'s job?", firstName));
let answers = qa_model.predict(&[QaInput { question, context }], 1, 32);
return ("".to_string(), "".to_string(), "".to_string(), "".to_string())
}
// fn getHumanFromContext(context: String, firstName: String) -> (String, String, String, String) {
// //
// let bertconfig = QuestionAnsweringConfig::new(
// ModelType::Bert,
// RemoteResource::from_pretrained(BertModelResources::BERT_QA),
// RemoteResource::from_pretrained(BertConfigResources::BERT_QA),
// RemoteResource::from_pretrained(BertVocabResources::BERT_QA),
// None, //merges resource only relevant with ModelType::Roberta
// false,
// false,
// None,
// );
// let mut model = QuestionAnsweringModel::new(bertconfig).unwrap();
// let gender = String::from(format!("What is {}'s gender?", firstName));
// let age = String::from(format!("What is {}'s age?", firstName));
// let country= String::from(format!("Where does {} live?", firstName));
// let job = String::from(format!("What is {}'s job?", firstName));
// let answers = model.predict(&[QaInput { question: gender, context: context }], 1, 32);
// return ("".to_string(), "".to_string(), "".to_string(), "".to_string())
// }